This is an unofficial PyTorch implementation of the paper Variational encoding approach for interpretable assessment of remaining useful life estimation. This repo builds on the codebase of the official Tensorflow implementation here.
Implementation | Dataset | lr | RMSE |
---|---|---|---|
Paper | FD001 | 0.001 | 13.42 |
Our Implementation | FD001 | 0.005 | 11.05 |
Paper | FD002 | 0.001 | 14.92 |
Our Implementation | FD002 | 0.005 | 13.99 |
Paper | FD003 | 0.001 | 12.51 |
Our Implementation | FD003 | 0.001 | 12.08 |
Paper | FD004 | 0.001 | 16.37 |
Our Implementation | FD004 | 0.005 | 16.70 |
- We found the optimal LR for each dataset using grid-search (lr = choice(0.1, 0.01, 0.005, 0.001, 0.0001))
- Costa N, Sánchez L. Variational encoding approach for interpretable assessment of remaining useful life estimation. Reliab Eng Syst Saf. 2022;222:108353. doi:10.1016/J.RESS.2022.108353