Implementation of "Trajectory Prediction for Heterogeneous Agents: A Performance Analysis on Small and Imbalanced Datasets".
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── original <- Data to train the models
│ ├── processed <- Data to evaluate k-fold cross validation
│
├── notebooks <- Jupyter notebooks.
│
├── requirements.yml <- The requirements file for reproducing the analysis environment
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── class_cond_trajpred <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ └── train_model.py
│ ├── mods <- Scripts to train and evaluate MoD-based models
│ │ │
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
└── tox.ini <- tox file with settings for running tox; see tox.readthedocs.io
Project based on the cookiecutter data science project template. #cookiecutterdatascience
Install miniconda. Then, you can install all packages required by running:
conda env create -f environment.yml && conda activate thor-magni-tools
And run:
pip install .
Steps to train and test deep learning-based predictors (i.e., RED, cRED, TF, cTF, GAN, cGAN, VAE, and cVAE).
Set the corresponding cfg file on the config folder to the original data as follows:
data :
data_dir : data/original/thor_magni/ # data/original/sdd/ for SDD dataset
Run the train_model module with the corresponding config file:
python -m class_cond_trajpred.data_modeling.train_model class_cond_trajpred/cfg/thor_magni/sup_ctf.yaml
Set the corresponding cfg file on the config folder to the processed data as follows:
data :
data_dir : data/processed/sdd/k_fold_10 # data/original/thor_magni/ for THOR-MAGNI dataset
python -m class_cond_trajpred.data_modeling.k_fold_cv 10 class_cond_trajpred/cfg/thor_magni/gan.yaml
To train with (x, y, v_x, v_y)
, we need to change the cfg file under network
: set observation_len
to 8.
In MoD-based predictors, we have class-conditioned CLiFF-LHMP and general CLiFF-LHMP. Both methods use same evaluation datasets: SDD and THÖR-MAGNI. The corresponding dataset directories are located at data/mod_based_predictors_data/sdd
and data/mod_based_predictors_data/thor_magni
. Within the dataset folder, test ratios ranging from 10% to 90% are available. For instance, k_fold_10_percentage_test
corresponds to configurations where 10% of the data is used for testing and the remaining 90% for training. In each test ratio configuration, the test data are repeatedly and randomly sub-sampled 10 times, resulting in batches from batch1
to batch10
.
To run MoD predictors:
./mod_based_predictors/run_mod_predictors.sh
In run_mod_predictors.sh
, it contains command to run MoD predictors for both datasets, take class-conditioned CLiFF-LHMP for THÖR-MAGNI dataset as an example:
r_s=0.2
exp_type="condition"
if_rank=2
generate_traj_num=5
beta=1
version="r${r_s}_k${generate_traj_num}_${exp_type}"
python3 mod_based_predictors/main_mod_magni.py "$r_s" "$generate_traj_num" "$version" "$if_rank" "$exp_type" "$beta"
Here, the input parameters are:
-
r_s: sampling radius, for sampling velocity in MoD
-
exp_type: "condition" or "general"
-
if_rank:
- 0: for evaluate with k predicted trajectory, output average ADE/FDE
- 1: for evaluate with k predicted trajectory, output weighted average ADE/FDE
- 2: for evaluate with most-likely predicted trajectory,
-
generate_traj_num: generate k predicted trajectories
-
beta: for controlling the reliance on the MoD versus the CVM,with a lower β favoring the velocity sampled from the MoD.
The output evaluation metrics are saved in mod_based_predictors/results
. It is also optional to save and plot predicted trajectories.