-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
269 lines (233 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""Training GCMC model on the Amazon Electronic Products data set.
adapted from: https://github.com/dmlc/dgl/tree/master/examples/pytorch/gcmc
Parameters to run:
--data_name=electronic --use_one_hot_fea --gcn_agg_accum=stack # stack aggregator
--data_name=electronic --use_one_hot_fea --gcn_agg_units 50 --gcn_out_units 25 --gcn_agg_accum=sum # sum aggregator
"""
import argparse
import logging
import os
import random
import string
import time
import numpy as np
import torch as th
import torch.nn as nn
from amazon import Amazon
from model import BiDecoder, GCMCLayer
from utils import get_activation, get_optimizer, torch_total_param_num, torch_net_info, MetricLogger
class Net(nn.Module):
def __init__(self, args):
super(Net, self).__init__()
self._act = get_activation(args.model_activation)
self.encoder = GCMCLayer(args.rating_vals,
args.src_in_units,
args.dst_in_units,
args.gcn_agg_units,
args.gcn_out_units,
args.gcn_dropout,
args.gcn_agg_accum,
agg_act=self._act,
share_user_item_param=args.share_param,
device=args.device)
self.decoder = BiDecoder(in_units=args.gcn_out_units,
num_classes=len(args.rating_vals),
num_basis=args.gen_r_num_basis_func)
def forward(self, enc_graph, dec_graph, ufeat, ifeat):
user_out, item_out = self.encoder(
enc_graph,
ufeat,
ifeat)
pred_ratings = self.decoder(dec_graph, user_out, item_out)
return pred_ratings
def evaluate(args, net, dataset, segment='valid'):
possible_rating_values = dataset.possible_rating_values
nd_possible_rating_values = th.FloatTensor(possible_rating_values).to(args.device)
if segment == "valid":
rating_values = dataset.valid_truths
enc_graph = dataset.valid_enc_graph
dec_graph = dataset.valid_dec_graph
elif segment == "test":
rating_values = dataset.test_truths
enc_graph = dataset.test_enc_graph
dec_graph = dataset.test_dec_graph
else:
raise NotImplementedError
# Evaluate RMSE
net.eval()
with th.no_grad():
pred_ratings = net(enc_graph, dec_graph,
dataset.user_feature, dataset.item_feature)
real_pred_ratings = (th.softmax(pred_ratings, dim=1) *
nd_possible_rating_values.view(1, -1)).sum(dim=1)
rmse = ((real_pred_ratings - rating_values) ** 2.).mean().item()
rmse = np.sqrt(rmse)
return rmse
def train(args):
print(args)
if args.data_name == 'electronic':
dataset = Amazon(args.data_name, args.device, use_one_hot_fea=args.use_one_hot_fea, symm=args.gcn_agg_norm_symm,
test_ratio=args.data_test_ratio, valid_ratio=args.data_valid_ratio)
else:
dataset = MovieLens(args.data_name, args.device, use_one_hot_fea=args.use_one_hot_fea, symm=args.gcn_agg_norm_symm,
test_ratio=args.data_test_ratio, valid_ratio=args.data_valid_ratio)
print("Loading data finished ...\n")
args.src_in_units = dataset.user_feature_shape[1]
if args.data_name == 'electronic':
args.dst_in_units = dataset.item_feature_shape[1]
else:
args.dst_in_units = dataset.item_feature_shape[1]
args.rating_vals = dataset.possible_rating_values
start = time.time()
### build the net
net = Net(args=args)
net = net.to(args.device)
nd_possible_rating_values = th.FloatTensor(dataset.possible_rating_values).to(args.device)
rating_loss_net = nn.CrossEntropyLoss()
learning_rate = args.train_lr
optimizer = get_optimizer(args.train_optimizer)(net.parameters(), lr=learning_rate)
print("Loading network finished ...\n")
### perpare training data
train_gt_labels = dataset.train_labels
train_gt_ratings = dataset.train_truths
### prepare the logger
train_loss_logger = MetricLogger(['iter', 'loss', 'rmse'], ['%d', '%.4f', '%.4f'],
os.path.join(args.save_dir, 'train_loss%d.csv' % args.save_id))
valid_loss_logger = MetricLogger(['iter', 'rmse'], ['%d', '%.4f'],
os.path.join(args.save_dir, 'valid_loss%d.csv' % args.save_id))
test_loss_logger = MetricLogger(['iter', 'rmse'], ['%d', '%.4f'],
os.path.join(args.save_dir, 'test_loss%d.csv' % args.save_id))
### declare the loss information
best_valid_rmse = np.inf
no_better_valid = 0
best_iter = -1
count_rmse = 0
count_num = 0
count_loss = 0
dataset.train_enc_graph = dataset.train_enc_graph.int().to(args.device)
dataset.train_dec_graph = dataset.train_dec_graph.int().to(args.device)
dataset.valid_enc_graph = dataset.train_enc_graph
dataset.valid_dec_graph = dataset.valid_dec_graph.int().to(args.device)
dataset.test_enc_graph = dataset.test_enc_graph.int().to(args.device)
dataset.test_dec_graph = dataset.test_dec_graph.int().to(args.device)
print("Start training ...")
dur = []
for iter_idx in range(1, args.train_max_iter):
if iter_idx > 3:
t0 = time.time()
net.train()
if args.data_name == 'electronic':
pred_ratings = net(dataset.train_enc_graph, dataset.train_dec_graph,
dataset.user_feature, dataset.item_feature)
else:
pred_ratings = net(dataset.train_enc_graph, dataset.train_dec_graph,
dataset.user_feature, dataset.item_feature)
loss = rating_loss_net(pred_ratings, train_gt_labels).mean()
count_loss += loss.item()
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(net.parameters(), args.train_grad_clip)
optimizer.step()
if iter_idx > 3:
dur.append(time.time() - t0)
if iter_idx == 1:
print("Total #Param of net: %d" % (torch_total_param_num(net)))
print(torch_net_info(net, save_path=os.path.join(args.save_dir, 'net%d.txt' % args.save_id)))
real_pred_ratings = (th.softmax(pred_ratings, dim=1) *
nd_possible_rating_values.view(1, -1)).sum(dim=1)
rmse = ((real_pred_ratings - train_gt_ratings) ** 2).sum()
count_rmse += rmse.item()
count_num += pred_ratings.shape[0]
if iter_idx % args.train_log_interval == 0:
train_loss_logger.log(iter=iter_idx,
loss=count_loss/(iter_idx+1), rmse=count_rmse/count_num)
logging_str = "Iter={}, loss={:.4f}, rmse={:.4f}, time={:.4f}".format(
iter_idx, count_loss/iter_idx, count_rmse/count_num,
np.average(dur))
count_rmse = 0
count_num = 0
if iter_idx % args.train_valid_interval == 0:
valid_rmse = evaluate(args=args, net=net, dataset=dataset, segment='valid')
valid_loss_logger.log(iter = iter_idx, rmse = valid_rmse)
logging_str += ',\tVal RMSE={:.4f}'.format(valid_rmse)
if valid_rmse < best_valid_rmse:
best_valid_rmse = valid_rmse
no_better_valid = 0
best_iter = iter_idx
test_rmse = evaluate(args=args, net=net, dataset=dataset, segment='test')
best_test_rmse = test_rmse
test_loss_logger.log(iter=iter_idx, rmse=test_rmse)
logging_str += ', Test RMSE={:.4f}'.format(test_rmse)
else:
no_better_valid += 1
if no_better_valid > args.train_early_stopping_patience\
and learning_rate <= args.train_min_lr:
logging.info("Early stopping threshold reached. Stop training.")
break
if no_better_valid > args.train_decay_patience:
new_lr = max(learning_rate * args.train_lr_decay_factor, args.train_min_lr)
if new_lr < learning_rate:
learning_rate = new_lr
logging.info("\tChange the LR to %g" % new_lr)
for p in optimizer.param_groups:
p['lr'] = learning_rate
no_better_valid = 0
if iter_idx % args.train_log_interval == 0:
print(logging_str)
print('Best Iter Idx={}, Best Valid RMSE={:.4f}, Best Test RMSE={:.4f}'.format(
best_iter, best_valid_rmse, best_test_rmse))
train_loss_logger.close()
valid_loss_logger.close()
test_loss_logger.close()
with open(os.path.join(args.save_dir, f'duration_{args.save_id:d}.txt'), 'a') as f:
print(f'wall: {time.time() - start}')
f.write(f'wall: {time.time() - start}')
def config():
parser = argparse.ArgumentParser(description='GCMC')
parser.add_argument('--seed', default=2021, type=int)
parser.add_argument('--device', default='0', type=int,
help='Running device. E.g `--device 0`, if using cpu, set `--device -1`')
parser.add_argument('--save_dir', type=str, help='The saving directory')
parser.add_argument('--save_id', type=int, help='The saving logs id')
parser.add_argument('--silent', action='store_true')
parser.add_argument('--data_name', default='ml-1m', type=str,
help='The dataset name: ml-100k, ml-1m, ml-10m')
parser.add_argument('--data_test_ratio', type=float, default=0.2)
parser.add_argument('--data_valid_ratio', type=float, default=0.2)
parser.add_argument('--use_one_hot_fea', action='store_true', default=False)
parser.add_argument('--model_activation', type=str, default="leaky")
parser.add_argument('--gcn_dropout', type=float, default=0.3)
parser.add_argument('--gcn_agg_norm_symm', type=bool, default=True)
parser.add_argument('--gcn_agg_units', type=int, default=500)
parser.add_argument('--gcn_agg_accum', type=str, default="sum")
parser.add_argument('--gcn_out_units', type=int, default=100)
parser.add_argument('--gen_r_num_basis_func', type=int, default=2)
parser.add_argument('--train_max_iter', type=int, default=300)
parser.add_argument('--train_log_interval', type=int, default=1)
parser.add_argument('--train_valid_interval', type=int, default=1)
parser.add_argument('--train_optimizer', type=str, default="adam")
parser.add_argument('--train_grad_clip', type=float, default=1.0)
parser.add_argument('--train_lr', type=float, default=1e-3)
parser.add_argument('--train_min_lr', type=float, default=1e-3)
parser.add_argument('--train_lr_decay_factor', type=float, default=0.0)
parser.add_argument('--train_decay_patience', type=int, default=300)
parser.add_argument('--train_early_stopping_patience', type=int, default=300)
parser.add_argument('--share_param', default=False, action='store_true')
args = parser.parse_args()
args.device = th.device(args.device) if args.device >= 0 else th.device('cpu')
### configure save_fir to save all the info
if args.save_dir is None:
args.save_dir = args.data_name+"_" + ''.join(random.choices(string.ascii_uppercase + string.digits, k=2))
if args.save_id is None:
args.save_id = np.random.randint(20)
args.save_dir = os.path.join("log", args.save_dir)
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
return args
if __name__ == '__main__':
args = config()
np.random.seed(args.seed)
th.manual_seed(args.seed)
if th.cuda.is_available():
th.cuda.manual_seed_all(args.seed)
train(args)