-
Notifications
You must be signed in to change notification settings - Fork 1
/
ShapeTensor.cpp
488 lines (444 loc) · 14.7 KB
/
ShapeTensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/*
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "ShapeTensor.hpp"
#include "TensorOrWeights.hpp"
#include "onnx2trt_utils.hpp"
#include <algorithm>
#include <cassert>
#include <functional>
namespace onnx2trt
{
ShapeTensor::ShapeTensor(int rank_, std::vector<int64_t>&& values_)
: mDepth(0)
, mAllValuesKnown(true)
, mRank(rank_)
, mSize(values_.size())
, mValues(std::move(values_))
{
assert((rank_ == 0 || rank_ == 1) && "shape tensor must have rank 0 or 1");
assert(rank_ > 0 || mValues.size() == 1);
}
ShapeTensor::ShapeTensor(TensorOrWeights& t)
: mDepth(0)
{
if (t.is_tensor())
{
*this = ShapeTensor(t.tensor());
}
else
{
const nvinfer1::Dims d = t.shape();
assert(0 <= d.nbDims);
assert(d.nbDims <= 1 && "shape tensor must be 0D or 1D");
mRank = d.nbDims;
mSize = d.nbDims == 0 ? 1 : d.d[0];
weightsToVector(t.weights(), &mValues);
mAllValuesKnown = true;
}
}
static bool hasAllNonNegativeValues(const std::vector<int64_t>& values)
{
return std::all_of(values.begin(), values.end(), [](int x) { return x >= 0; });
}
ShapeTensor::ShapeTensor(nvinfer1::ITensor& t, int depth)
: mDepth(depth)
, mRank(1)
, mTensor(&t)
{
const nvinfer1::Dims dims = t.getDimensions();
switch (mDepth)
{
case 0:
assert(t.getType() == nvinfer1::DataType::kINT32);
mRank = dims.nbDims;
if (mRank == 0)
{
mSize = 1;
}
else if (mRank == 1)
{
mSize = dims.d[0];
}
else
{
assert(mRank == -1);
}
break;
case 1:
if (dims.nbDims >= 0)
{
mSize = dims.nbDims;
mValues.resize(dims.nbDims);
std::copy_n(dims.d, dims.nbDims, mValues.begin());
mAllValuesKnown = hasAllNonNegativeValues(mValues);
}
break;
case 2:
mSize = 1;
if (dims.nbDims >= 0)
{
mValues = {dims.nbDims};
mAllValuesKnown = hasAllNonNegativeValues(mValues);
}
break;
case 3:
// Applying IShapeLayer three times always yields a 1D vector containing 1.
mDepth = 0;
mSize = 1;
mValues = {1};
mAllValuesKnown = true;
mTensor = nullptr;
break;
default:
// Though depths greater than 3 could be handled the same as 3, they are
// likely a sign of a problem. Depths less than 0 make no sense.
assert(0);
break;
}
}
ShapeTensor shapeVector(int64_t value)
{
return ShapeTensor(1, std::vector<int64_t>({value}));
}
ShapeTensor shapeScalar(int64_t value)
{
return ShapeTensor(0, std::vector<int64_t>({value}));
}
bool ShapeTensor::valueKnown(int k) const
{
assert(0 <= k);
assert(k < mSize);
return allValuesKnown() || (mValues.size() == static_cast<size_t>(mSize) && mValues[k] >= 0);
}
bool ShapeTensor::isAll(int64_t x) const
{
assert(mDepth >= 0 && "undefined tensor");
return allValuesKnown() && std::all_of(begin(), end(), [x](int64_t y) { return x == y; });
}
nvinfer1::ITensor& ShapeTensor::tensor(IImporterContext* ctx) const
{
assert(mDepth >= 0 && "undefined tensor");
assert(mDepth <= 2);
if (!mTensor || mDepth != 0)
{
// Need to create an ITensor representing *this.
if (allValuesKnown())
{
// Create constant
const nvinfer1::Dims dims{rank(), {size()}, {}};
const nvinfer1::Weights w{nvinfer1::DataType::kINT32, convertINT64(mValues.data(), dims, ctx), size()};
mTensor = ctx->network()->addConstant(dims, w)->getOutput(0);
mDepth = 0;
}
else
{
assert(mTensor);
for (; mDepth > 0; --mDepth)
{
mTensor = ctx->network()->addShape(*mTensor)->getOutput(0);
}
}
}
return *mTensor;
}
ShapeTensor iotaShapeVector(int32_t n)
{
std::vector<int64_t> values(n);
std::iota(values.begin(), values.end(), 0);
return ShapeTensor(1, std::move(values));
}
ShapeTensor similar(IImporterContext* ctx, const ShapeTensor& exemplar, int64_t value)
{
return fillShapeVector(ctx, value, shapeOf(exemplar));
}
ShapeTensor fillShapeVector(IImporterContext* ctx, int64_t value, const ShapeTensor& count)
{
assert(count.rank() == 1 && "implementation assumes 1D size");
assert(count.size() == 1 && "implementation assumes 1D size of known size");
if (count.allValuesKnown())
{
return ShapeTensor(1, std::vector<int64_t>(count[0], value));
}
else
{
nvinfer1::ISliceLayer* slice
= addSlice(ctx, shapeVector(value).tensor(ctx), shapeVector(0), count, shapeVector(0));
return ShapeTensor(*slice->getOutput(0));
}
}
using nvinfer1::ElementWiseOperation;
//! Helper that implements an elementwise operations on two shape tensors x and y.
//! f must implement the operation on a pair of int64_t.
//! commutes should be true f is commutative.
//! rightIdentity should be the right identity value for f.
static ShapeTensor op(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y, ElementWiseOperation operation,
bool commutative, int64_t rightIdentity, const std::function<int64_t(int64_t, int64_t)>&& f)
{
assert(!x.rankKnown() || !y.rankKnown() || x.rank() == y.rank());
if (x.sizeKnown() && y.sizeKnown())
{
assert(x.size() == 1 || y.size() == 1 || x.size() == y.size());
if (y.isAll(rightIdentity) && y.size() <= x.size())
{
return x;
}
if (commutative && x.isAll(rightIdentity) && x.size() <= y.size())
{
return y;
}
}
if (x.allValuesKnown() && y.allValuesKnown())
{
std::vector<int64_t> values(std::max(x.size(), y.size()));
for (size_t i = 0; i < values.size(); ++i)
{
// The % simulates broadcast rules.
values[i] = f(x[i % x.size()], y[i % y.size()]);
}
return ShapeTensor(x.rank(), std::move(values));
}
return ShapeTensor(*ctx->network()->addElementWise(x.tensor(ctx), y.tensor(ctx), operation)->getOutput(0), 0);
}
ShapeTensor add(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y)
{
return op(ctx, x, y, ElementWiseOperation::kSUM, true, 0, std::plus<int64_t>());
}
ShapeTensor sub(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y)
{
return op(ctx, x, y, ElementWiseOperation::kSUB, false, 0, std::minus<int64_t>());
}
ShapeTensor mul(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y)
{
return op(ctx, x, y, ElementWiseOperation::kPROD, true, 1, std::multiplies<int64_t>());
}
ShapeTensor min(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y)
{
return op(ctx, x, y, ElementWiseOperation::kMIN, true, std::numeric_limits<int64_t>::max(),
[](int64_t x, int64_t y) { return std::min(x, y); });
}
ShapeTensor max(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y)
{
return op(ctx, x, y, ElementWiseOperation::kMAX, true, std::numeric_limits<int64_t>::min(),
[](int64_t x, int64_t y) { return std::max(x, y); });
}
ShapeTensor floorDiv(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y)
{
return op(ctx, x, y, ElementWiseOperation::kFLOOR_DIV, false, 1, [](int64_t x, int64_t y) {
assert(y != 0 && "divisor must be non-zero");
const int64_t d = x / y;
return d * y == x ? d : d - ((x < 0) ^ (y < 0));
});
}
ShapeTensor broadcast(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y)
{
// max(x,y) works unless x or y is 0.
// min(x,y,1) yields 0 if x or y is 0, and 1 otherwise.
// So compute max(x,y)*min(x,y,1).
return mul(ctx, max(ctx, x, y), min(ctx, x, min(ctx, y, similar(ctx, y, 1))));
}
ShapeTensor product(IImporterContext* ctx, const ShapeTensor& x, int first, int last, int rank)
{
assert(first <= last);
ShapeTensor z(rank, std::vector<int64_t>(1, 1));
for (int i = first; i < last; ++i)
{
z = mul(ctx, z, gather(ctx, x, ShapeTensor(rank, std::vector<int64_t>(1, i))));
}
return z;
}
ShapeTensor concat(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y)
{
assert(!x.rankKnown() || x.rank() == 1);
assert(!y.rankKnown() || y.rank() == 1);
if (x.sizeKnown() && x.size() == 0)
{
return y;
}
if (y.sizeKnown() && y.size() == 0)
{
return x;
}
if (x.allValuesKnown() && y.allValuesKnown())
{
std::vector<int64_t> values(x.size() + y.size());
auto p = std::copy(x.begin(), x.end(), values.begin());
std::copy(y.begin(), y.end(), p);
return ShapeTensor(1, std::move(values));
}
nvinfer1::ITensor* const args[2] = {&x.tensor(ctx), &y.tensor(ctx)};
return ShapeTensor(*ctx->network()->addConcatenation(args, 2)->getOutput(0));
}
ShapeTensor gather(IImporterContext* ctx, const ShapeTensor& data, const ShapeTensor& indices)
{
assert(data.rank() == 1);
if (indices.allValuesKnown()
&& std::all_of(indices.begin(), indices.end(), [&data](int i) { return data.valueKnown(i); }))
{
std::vector<int64_t> z(indices.size());
std::transform(indices.begin(), indices.end(), z.begin(), [&data](int64_t i) {
assert(0 <= i);
assert(i < data.size());
return data[i];
});
return ShapeTensor(indices.rank(), std::move(z));
}
return ShapeTensor(*ctx->network()->addGather(data.tensor(ctx), indices.tensor(ctx), 0)->getOutput(0));
}
ShapeTensor shapeOf(nvinfer1::ITensor& tensor)
{
return ShapeTensor(tensor, 1);
}
ShapeTensor shapeOf(TensorOrWeights& t)
{
if (t.is_tensor())
{
return shapeOf(t.tensor());
}
else
{
const nvinfer1::Dims& d = t.weights().shape;
return ShapeTensor(1, std::vector<int64_t>(d.d, d.d + d.nbDims));
}
}
ShapeTensor shapeOf(const ShapeTensor& t)
{
assert(t.mDepth >= 0);
if (t.mTensor)
{
return ShapeTensor(*t.mTensor, t.mDepth + 1);
}
else
{
assert(t.rankKnown());
assert(t.sizeKnown());
// ShapeTensor is either a scalar or vector.
// shape of a scalar is an empty tensor.
// shape of a vector is a one-element tensor containing the length of the vector.
return t.rank() == 0 ? ShapeTensor(0, {}) : ShapeTensor(1, {t.size()});
}
}
ShapeTensor convertTo1D(IImporterContext* ctx, const ShapeTensor& tensor)
{
assert(tensor.rank() == 0);
assert(tensor.size() == 1);
if (tensor.valueKnown(0))
{
return shapeScalar(tensor[0]);
}
return ShapeTensor(*addShuffle(ctx, tensor.tensor(ctx), shapeVector(1))->getOutput(0));
}
//! If all values of x are known, return Dims with those values.
//! Otherwise return Dims with zeros.
static nvinfer1::Dims toDims(const ShapeTensor& x)
{
nvinfer1::Dims d{-1, {}, {}};
if (x.sizeKnown())
{
d.nbDims = x.size();
if (x.allValuesKnown())
{
assert(x.size() <= nvinfer1::Dims::MAX_DIMS);
std::copy(x.begin(), x.end(), d.d);
}
}
return d;
}
//! If not all values in x are known, set layer input specifed by inputIndex
//! to tensor with value of x.
static void setShapeInputIfDynamic(IImporterContext* ctx, nvinfer1::ILayer* layer, int inputIndex, const ShapeTensor& x)
{
if (!x.allValuesKnown())
{
layer->setInput(inputIndex, x.tensor(ctx));
}
}
bool operator==(const ShapeTensor& x, const ShapeTensor& y)
{
if (x.allValuesKnown() && y.allValuesKnown())
{
return x.mValues == y.mValues;
}
assert(x.mTensor || y.mTensor);
return x.mTensor == y.mTensor && x.mDepth == y.mDepth;
}
nvinfer1::ITensor& reshape(IImporterContext* ctx, nvinfer1::ITensor& data, const ShapeTensor& newShape)
{
const ShapeTensor oldShape = shapeOf(data);
if (newShape == oldShape)
{
return data;
}
return *addShuffle(ctx, data, newShape)->getOutput(0);
}
nvinfer1::IShuffleLayer* addShuffle(
IImporterContext* ctx, nvinfer1::ITensor& data, const ShapeTensor& reshapeDims, bool zeroIsPlaceholder)
{
nvinfer1::IShuffleLayer* shuffle = ctx->network()->addShuffle(data);
if (reshapeDims.allValuesKnown())
{
shuffle->setReshapeDimensions(toDims(reshapeDims));
}
else
{
shuffle->setInput(1, reshapeDims.tensor(ctx));
}
shuffle->setZeroIsPlaceholder(zeroIsPlaceholder);
return shuffle;
}
nvinfer1::ISliceLayer* addSlice(IImporterContext* ctx, nvinfer1::ITensor& data, const ShapeTensor& starts,
const ShapeTensor& sizes, const ShapeTensor& strides)
{
nvinfer1::ISliceLayer* slice = ctx->network()->addSlice(data, toDims(starts), toDims(sizes), toDims(strides));
setShapeInputIfDynamic(ctx, slice, 1, starts);
setShapeInputIfDynamic(ctx, slice, 2, sizes);
setShapeInputIfDynamic(ctx, slice, 3, strides);
return slice;
}
nvinfer1::IFillLayer* addFill(IImporterContext* ctx, const ShapeTensor& shape, nvinfer1::FillOperation op)
{
nvinfer1::IFillLayer* fill = ctx->network()->addFill(toDims(shape), op);
setShapeInputIfDynamic(ctx, fill, 0, shape);
return fill;
}
std::ostream& operator<<(std::ostream& stream, const ShapeTensor& x)
{
stream << "(";
for (int i = 0, e = x.size(); i < e; ++i)
{
stream << (i ? ", " : "");
if (x.valueKnown(i))
{
stream << x[i];
}
else
{
stream << "_";
}
}
if (x.size() == 1 && x.rank() == 1)
{
// Use Python convention to distinguish 1-element vector from a scalar.
stream << ",";
}
return stream << ")";
}
} // namespace onnx2trt