diff --git a/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/1st-semester/page.jsx b/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/1st-semester/page.jsx index 8ea5def..5ff2c7c 100644 --- a/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/1st-semester/page.jsx +++ b/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/1st-semester/page.jsx @@ -6,9 +6,13 @@ const courses = { name: "MTH 211 - Statistics", route: "1st-semester/mth211", }, + { + name: "MTH 203 - Linear Algebra I", + route: "1st-semester/mth203", + }, ], }; -export default function _2nd_semester() { +export default function _1st_semester() { return ; } diff --git a/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/mth202/page.jsx b/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/mth202/page.jsx index 0f24b51..f33a488 100644 --- a/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/mth202/page.jsx +++ b/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/mth202/page.jsx @@ -11,7 +11,7 @@ export default function MTH202() { semester="second semester" courseCode="mth202" courseTitle="linear algebra II" - allowedTime="2hr: 30mins" + allowedTime="2hrs: 30mins" instruction="answer any other THREE (3) questions only" >
  • diff --git a/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/mth206/page.jsx b/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/mth206/page.jsx new file mode 100644 index 0000000..2b42858 --- /dev/null +++ b/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/mth206/page.jsx @@ -0,0 +1,589 @@ +import Questions from "@/components/Questions"; +import Answers from "@/components/Answers"; + +export default function MTH206() { + return ( + +
  • +

    Question 1

    +
      +
    1. + Solve the integral{" "} + + + + e + 5x + + sin + 3x + dx + {" "} + (7.5 marks) + +
    2. +
    3. + Integrate by partial function{" "} + + + + + + + 2 + x2 + + + + + 6x + - + 35 + + + + + x + 2 + + + - + x + - + 12 + + + dx + {" "} + (10 marks) + +
    4. +
    +
  • + +
  • +

    Question 2

    +
      +
    1. + Solve the integral{" "} + + + + x + 3 + + + e + 2x + + dx + {" "} + (7.5 marks) + +
    2. +
    3. + Prove that cos x = 1{" "} + + - + + + + x + 2 + + + + 2! + + + + + + + + x + 4 + + + + 4! + + + - + + + + x + 6 + + + + 6! + + + + + ... + {" "} + and that the series is valid for all values of x{" "} + (10 marks) + +
    4. +
    +
  • + +
  • +

    Question 3

    +

    Solve the following equations using D operator

    +
      +
    1. + ( + + + D + 2 + + + + 4 + D + - + 3 + + )( + + + e + 2x + + + ) +
    2. +
    3. + + + + 1 + + + + (D + 2 + + + + 4) + + + + ( + + + + e + -3x + + + + ) +
    4. +
    5. + ( + + + D + 2 + + - + 7D + + + 2 + + )( + + + e + x/2 + + + ) +
    6. +
    7. + + + + 1 + + + + D + 2 + + - + 3D + - + 2 + + + + ( + + + + e + 5x + + + + ) +
    8. +
    9. + ( + + D + + + 4 + + )( + + + e + 3x + + + ) +
    10. +
    + (17.5 marks) + +
  • + +
  • +

    Question 4

    +

    + Find{" "} + + + + ∂z + + + ∂x + + + {" "} + and{" "} + + + + ∂z + + + ∂x + + + + : +

    +
      +
    1. + z = 4x2 + 3xy + 5y2 +
    2. +
    3. z = (3x + 2xy)(4x - 5y)
    4. +
    5. z = tan(3x + 4y)
    6. +
    7. + z = + + + + sin + (3x + + + 2y) + + + xy + + + +
    8. +
    + (10 marks) + +
  • + +
  • +

    Question 5

    +

    Solve the following equations by operator D method

    +
      +
    1. + ( + + + D + 2 + + - + 5 + D + - + 4 + + )( + + + x + 2 + + + + 4x + + + 1 + + ) +
    2. +
    3. + ( + + + D + 2 + + - + 7 + D + + + 3 + + )( + + sin + 2x + + + 3 + cos + 2x + + ) +
    4. +
    5. + ( + + + D + 2 + + - + 3 + D + + + 6 + + )( + + + 4e + 2x + + + ) +
    6. +
    7. + + + + 1 + + + D + + + + ( + + 2 + + x + 2 + + + + 8 + + + + + 3 + + + x + + + + ) +
    8. {" "} +
    9. + + + + 1 + + + + D + 2 + + + + + ( + + 3 + + x + 2 + + + + cos + 2x + + ) +
    10. +
    + +
  • + +
  • +

    Question 6

    +

    + Find all the first and second partial differential coefficients for + each of the following function: +

    +
      +
    1. + z = 3x2 + 2xy + 4y2{" "} + (3.5 marks) + +
    2. +
    3. + z = + + + + x + + + y + + + x + - + y + + + + (7 marks) + +
    4. +
    5. + If z = 5x2 + 3x2y4y3, find{" "} + + + + ∂z + + + ∂x + + + + ,{" "} + + + + ∂z + + + ∂y + + + + ,{" "} + + + + + + 2 + + z + + + + + x + 2 + + + + + ,{" "} + + + + + + 2 + + z + + + + + y + 2 + + + + + ,{" "} + + + + + + 2 + + z + + + ∂x + ∂y + + + {" "} + and{" "} + + + + + + 2 + + z + + + ∂y + ∂x + + + + +
    6. +
    +
  • + + ); +} diff --git a/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/page.jsx b/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/page.jsx index 9e63842..938e0ea 100644 --- a/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/page.jsx +++ b/src/app/past-questions-archive/wdu/mth/2022_2023/200-level/2nd-semester/page.jsx @@ -6,6 +6,10 @@ const courses = { name: "MTH 202 - Linear Algebra II", route: "2nd-semester/mth202", }, + { + name: "MTH 206 - Mathematical Method I", + route: "2nd-semester/mth206", + }, ], };