-
Notifications
You must be signed in to change notification settings - Fork 0
/
ref.bib
1797 lines (1563 loc) · 62.9 KB
/
ref.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@article{wu2020comprehensive,
title={A comprehensive survey on graph neural networks},
author={Wu, Zonghan and Pan, Shirui and Chen, Fengwen and Long, Guodong and Zhang, Chengqi and Philip, S Yu},
journal={IEEE transactions on neural networks and learning systems},
year={2020},
publisher={IEEE}
}
@article{defferrard2016convolutional,
title={Convolutional neural networks on graphs with fast localized spectral filtering},
author={Defferrard, Micha{\"e}l and Bresson, Xavier and Vandergheynst, Pierre},
journal={arXiv preprint arXiv:1606.09375},
year={2016}
}
@article{liao2019lanczosnet,
title={Lanczosnet: Multi-scale deep graph convolutional networks},
author={Liao, Renjie and Zhao, Zhizhen and Urtasun, Raquel and Zemel, Richard S},
journal={arXiv preprint arXiv:1901.01484},
year={2019}
}
@article{yun2019graph,
title={Graph transformer networks},
author={Yun, Seongjun and Jeong, Minbyul and Kim, Raehyun and Kang, Jaewoo and Kim, Hyunwoo J},
journal={arXiv preprint arXiv:1911.06455},
year={2019}
}
@article{bianchi2021graph,
title={Graph neural networks with convolutional arma filters},
author={Bianchi, Filippo Maria and Grattarola, Daniele and Livi, Lorenzo and Alippi, Cesare},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2021},
publisher={IEEE}
}
@article{choromanski2020rethinking,
title={Rethinking attention with performers},
author={Choromanski, Krzysztof and Likhosherstov, Valerii and Dohan, David and Song, Xingyou and Gane, Andreea and Sarlos, Tamas and Hawkins, Peter and Davis, Jared and Mohiuddin, Afroz and Kaiser, Lukasz and others},
journal={arXiv preprint arXiv:2009.14794},
year={2020}
}
@misc{balcilar2020bridging,
title={Bridging the Gap Between Spectral and Spatial Domains in Graph Neural Networks},
author={Muhammet Balcilar and Guillaume Renton and Pierre Heroux and Benoit Gauzere and Sebastien Adam and Paul Honeine},
year={2020},
eprint={2003.11702},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{nilsson2020experimental,
title={An Experimental Study of the Transferability of Spectral Graph Networks},
author={Nilsson, Axel and Bresson, Xavier},
journal={arXiv preprint arXiv:2012.10258},
year={2020}
}
@inproceedings{trivedi2019dyrep,
title={Dyrep: Learning representations over dynamic graphs},
author={Trivedi, Rakshit and Farajtabar, Mehrdad and Biswal, Prasenjeet and Zha, Hongyuan},
booktitle={International Conference on Learning Representations},
year={2019}
}
@article{kazemi2019relational,
title={Relational representation learning for dynamic (knowledge) graphs: A survey},
author={Kazemi, Seyed Mehran and Goel, Rishab and Jain, Kshitij and Kobyzev, Ivan and Sethi, Akshay and Forsyth, Peter and Poupart, Pascal},
journal={arXiv preprint arXiv:1905.11485},
year={2019}
}
@article{poli2019graph,
title={Graph neural ordinary differential equations},
author={Poli, Michael and Massaroli, Stefano and Park, Junyoung and Yamashita, Atsushi and Asama, Hajime and Park, Jinkyoo},
journal={arXiv preprint arXiv:1911.07532},
year={2019}
}
@inproceedings{zang2020neural,
title={Neural dynamics on complex networks},
author={Zang, Chengxi and Wang, Fei},
booktitle={Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={892--902},
year={2020}
}
@inproceedings{han2020graph,
title={Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs},
author={Han, Zhen and Ma, Yunpu and Wang, Yuyi and Gunnemann, Stephan and Tresp, Volker},
booktitle={Automated Knowledge Base Construction},
year={2020}
}
@article{liu2021learning,
title={Learning Representation over Dynamic Graph using Aggregation-Diffusion Mechanism},
author={Liu, Mingyi and Tu, Zhiying and Xu, Xiaofei and Wang, Zhongjie},
journal={arXiv preprint arXiv:2106.01678},
year={2021}
}
@inproceedings{taheri2019learning,
title={Learning to represent the evolution of dynamic graphs with recurrent models},
author={Taheri, Aynaz and Gimpel, Kevin and Berger-Wolf, Tanya},
booktitle={Companion Proceedings of The 2019 World Wide Web Conference},
pages={301--307},
year={2019}
}
@article{liu2018darts,
title={Darts: Differentiable architecture search},
author={Liu, Hanxiao and Simonyan, Karen and Yang, Yiming},
journal={arXiv preprint arXiv:1806.09055},
year={2018}
}
@article{denil2013predicting,
title={Predicting parameters in deep learning},
author={Denil, Misha and Shakibi, Babak and Dinh, Laurent and Ranzato, Marc'Aurelio and De Freitas, Nando},
journal={arXiv preprint arXiv:1306.0543},
year={2013}
}
@article{ha2016hypernetworks,
title={Hypernetworks},
author={Ha, David and Dai, Andrew and Le, Quoc V},
journal={arXiv preprint arXiv:1609.09106},
year={2016}
}
@article{zhang2018graph,
title={Graph hypernetworks for neural architecture search},
author={Zhang, Chris and Ren, Mengye and Urtasun, Raquel},
journal={arXiv preprint arXiv:1810.05749},
year={2018}
}
@article{cai2019once,
title={Once-for-all: Train one network and specialize it for efficient deployment},
author={Cai, Han and Gan, Chuang and Wang, Tianzhe and Zhang, Zhekai and Han, Song},
journal={arXiv preprint arXiv:1908.09791},
year={2019}
}
@article{bertinetto2016learning,
title={Learning feed-forward one-shot learners},
author={Bertinetto, Luca and Henriques, Jo{\~a}o F and Valmadre, Jack and Torr, Philip HS and Vedaldi, Andrea},
journal={arXiv preprint arXiv:1606.05233},
year={2016}
}
@incollection{Bengio+chapter2007,
author = {Bengio, Yoshua and LeCun, Yann},
booktitle = {Large Scale Kernel Machines},
publisher = {MIT Press},
title = {Scaling Learning Algorithms Towards {AI}},
year = {2007}
}
@article{Hinton06,
author = {Hinton, Geoffrey E. and Osindero, Simon and Teh, Yee Whye},
journal = {Neural Computation},
pages = {1527--1554},
title = {A Fast Learning Algorithm for Deep Belief Nets},
volume = {18},
year = {2006}
}
@book{goodfellow2016deep,
title={Deep learning},
author={Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron and Bengio, Yoshua},
volume={1},
year={2016},
publisher={MIT Press}
}
@article{bronstein2017geometric,
title={Geometric deep learning: going beyond euclidean data},
author={Bronstein, Michael M and Bruna, Joan and LeCun, Yann and Szlam, Arthur and Vandergheynst, Pierre},
journal={IEEE Signal Processing Magazine},
volume={34},
number={4},
pages={18--42},
year={2017},
publisher={IEEE}
}
@inproceedings{monti2017geometric,
title={Geometric deep learning on graphs and manifolds using mixture model CNNs},
author={Monti, Federico and Boscaini, Davide and Masci, Jonathan and Rodola, Emanuele and Svoboda, Jan and Bronstein, Michael M},
booktitle={Proc. CVPR},
volume={1},
number={2},
pages={3},
year={2017}
}
@techreport{krizhevsky2009learning,
title={Learning multiple layers of features from tiny images},
author={Krizhevsky, Alex},
year={2009},
institution={Citeseer}
}
@inproceedings{kipf2016semi,
title={Semi-supervised classification with graph convolutional networks},
author={Kipf, Thomas N and Welling, Max},
booktitle={International Conference on Learning Representations (ICLR)},
journal={arXiv preprint arXiv:1609.02907},
year={2017}
}
@article{henaff2015deep,
title={Deep convolutional networks on graph-structured data},
author={Henaff, Mikael and Bruna, Joan and LeCun, Yann},
journal={arXiv preprint arXiv:1506.05163},
year={2015}
}
@inproceedings{bruna2013spectral,
title={Spectral networks and locally connected networks on graphs},
author={Bruna, Joan and Zaremba, Wojciech and Szlam, Arthur and LeCun, Yann},
booktitle={International Conference on Learning Representations (ICLR)},
journal={arXiv preprint arXiv:1312.6203},
year={2014}
}
@inproceedings{fey2018splinecnn,
title={SplineCNN: Fast geometric deep learning with continuous B-spline kernels},
author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={869--877},
year={2018}
}
@article{lecun1998gradient,
title={Gradient-based learning applied to document recognition},
author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
journal={Proceedings of the IEEE},
volume={86},
number={11},
pages={2278--2324},
year={1998},
publisher={IEEE}
}
@inproceedings{simonovsky2017dynamic,
title={Dynamic edgeconditioned filters in convolutional neural networks on graphs},
author={Simonovsky, Martin and Komodakis, Nikos},
booktitle={Proc. CVPR},
year={2017}
}
@inproceedings{niepert2016learning,
title={Learning convolutional neural networks for graphs},
author={Niepert, Mathias and Ahmed, Mohamed and Kutzkov, Konstantin},
booktitle={Proceedings of the 33rd International Conference on Machine Learning (ICML)},
pages={2014--2023},
year={2016}
}
@article{shervashidze2011weisfeiler,
title={Weisfeiler-lehman graph kernels},
author={Shervashidze, Nino and Schweitzer, Pascal and Leeuwen, Erik Jan van and Mehlhorn, Kurt and Borgwardt, Karsten M},
journal={Journal of Machine Learning Research},
volume={12},
number={Sep},
pages={2539--2561},
year={2011}
}
@inproceedings{dai2016discriminative,
title={Discriminative embeddings of latent variable models for structured data},
author={Dai, Hanjun and Dai, Bo and Song, Le},
booktitle={Proceedings of the 33rd International Conference on Machine Learning (ICML)},
pages={2702--2711},
year={2016}
}
@inproceedings{zhang2018end,
title={An end-to-end deep learning architecture for graph classification},
author={Zhang, Muhan and Cui, Zhicheng and Neumann, Marion and Chen, Yixin},
booktitle={Proceedings of AAAI Conference on Artificial Inteligence},
year={2018}
}
@article{boldi2014axioms,
title={Axioms for centrality},
author={Boldi, Paolo and Vigna, Sebastiano},
journal={Internet Mathematics},
volume={10},
number={3-4},
pages={222--262},
year={2014},
publisher={Taylor \& Francis}
}
@article{zhou2016semantic,
title={Semantic understanding of scenes through the ADE20K dataset},
author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
journal={arXiv preprint arXiv:1608.05442},
year={2016}
}
@inproceedings{zhao2017pyramid,
title={Pyramid scene parsing network},
author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
booktitle={IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
pages={2881--2890},
year={2017}
}
@inproceedings{lin2017refinenet,
title={RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation.},
author={Lin, Guosheng and Milan, Anton and Shen, Chunhua and Reid, Ian D},
booktitle={Cvpr},
volume={1},
number={2},
pages={5},
year={2017}
}
@article{xie2017relating,
title={Relating Input Concepts to Convolutional Neural Network Decisions},
author={Xie, Ning and Sarker, Md Kamruzzaman and Doran, Derek and Hitzler, Pascal and Raymer, Michael},
journal={arXiv preprint arXiv:1711.08006},
year={2017}
}
@inproceedings{liang2016semantic,
title={Semantic object parsing with graph lstm},
author={Liang, Xiaodan and Shen, Xiaohui and Feng, Jiashi and Lin, Liang and Yan, Shuicheng},
booktitle={European Conference on Computer Vision},
pages={125--143},
year={2016},
organization={Springer}
}
@article{chen2018deeplab,
title={Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs},
author={Chen, Liang-Chieh and Papandreou, George and Kokkinos, Iasonas and Murphy, Kevin and Yuille, Alan L},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={40},
number={4},
pages={834--848},
year={2018},
publisher={IEEE}
}
@inproceedings{jin2017multi,
title={Multi-Path Feedback Recurrent Neural Networks for Scene Parsing.},
author={Jin, Xiaojie and Chen, Yunpeng and Jie, Zequn and Feng, Jiashi and Yan, Shuicheng},
booktitle={AAAI},
volume={3},
pages={8},
year={2017}
}
@inproceedings{liang2018dynamic,
title={Dynamic-structured Semantic Propagation Network},
author={Liang, Xiaodan and Zhou, Hongfei and Xing, Eric},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={752--761},
year={2018}
}
@inproceedings{xia2016zoom,
title={Zoom better to see clearer: Human and object parsing with hierarchical auto-zoom net},
author={Xia, Fangting and Wang, Peng and Chen, Liang-Chieh and Yuille, Alan L},
booktitle={European Conference on Computer Vision},
pages={648--663},
year={2016},
organization={Springer}
}
@inproceedings{shrivastava2014new,
title={A new space for comparing graphs},
author={Shrivastava, Anshumali and Li, Ping},
booktitle={Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining},
pages={62--71},
year={2014},
organization={IEEE Press}
}
@article{leskovec2007graph,
title={Graph evolution: Densification and shrinking diameters},
author={Leskovec, Jure and Kleinberg, Jon and Faloutsos, Christos},
journal={ACM Transactions on Knowledge Discovery from Data (TKDD)},
volume={1},
number={1},
pages={2},
year={2007},
publisher={ACM}
}
@article{hamilton2017representation,
title={Representation learning on graphs: Methods and applications},
author={Hamilton, William L and Ying, Rex and Leskovec, Jure},
journal={arXiv preprint arXiv:1709.05584},
year={2017}
}
@inproceedings{schlichtkrull2018modeling,
title={Modeling relational data with graph convolutional networks},
author={Schlichtkrull, Michael and Kipf, Thomas N and Bloem, Peter and van den Berg, Rianne and Titov, Ivan and Welling, Max},
booktitle={European Semantic Web Conference},
pages={593--607},
year={2018},
organization={Springer}
}
@article{levie2017cayleynets,
title={Cayleynets: Graph convolutional neural networks with complex rational spectral filters},
author={Levie, Ron and Monti, Federico and Bresson, Xavier and Bronstein, Michael M},
journal={arXiv preprint arXiv:1705.07664},
year={2017}
}
@inproceedings{bordes2013translating,
title={Translating embeddings for modeling multi-relational data},
author={Bordes, Antoine and Usunier, Nicolas and Garcia-Duran, Alberto and Weston, Jason and Yakhnenko, Oksana},
booktitle={Advances in neural information processing systems},
pages={2787--2795},
year={2013}
}
@article{battaglia2018relational,
title={Relational inductive biases, deep learning, and graph networks},
author={Battaglia, Peter W and Hamrick, Jessica B and Bapst, Victor and Sanchez-Gonzalez, Alvaro and Zambaldi, Vinicius and Malinowski, Mateusz and Tacchetti, Andrea and Raposo, David and Santoro, Adam and Faulkner, Ryan and others},
journal={arXiv preprint arXiv:1806.01261},
year={2018}
}
@inproceedings{gilmer2017neural,
title={Neural Message Passing for Quantum Chemistry},
author={Gilmer, Justin and Schoenholz, Samuel S and Riley, Patrick F and Vinyals, Oriol and Dahl, George E},
booktitle={Proceedings of the 34th International Conference on Machine Learning (ICML)},
pages={1263--1272},
year={2017}
}
@article{hammond2011wavelets,
title={Wavelets on graphs via spectral graph theory},
author={Hammond, David K and Vandergheynst, Pierre and Gribonval, R{\'e}mi},
journal={Applied and Computational Harmonic Analysis},
volume={30},
number={2},
pages={129--150},
year={2011},
publisher={Elsevier}
}
@inproceedings{duvenaud2015convolutional,
title={Convolutional networks on graphs for learning molecular fingerprints},
author={Duvenaud, David K and Maclaurin, Dougal and Iparraguirre, Jorge and Bombarell, Rafael and Hirzel, Timothy and Aspuru-Guzik, Al{\'a}n and Adams, Ryan P},
booktitle={Advances in neural information processing systems},
pages={2224--2232},
year={2015}
}
@inproceedings{omar2010two,
title={Two-dimensional Chebyshev polynomials for image fusion.},
author={Omar, Zaid and Mitianoudis, Nikolaos and Stathaki, Tania},
year={2010},
}
@article{kim2016hadamard,
title={Hadamard product for low-rank bilinear pooling},
author={Kim, Jin-Hwa and On, Kyoung-Woon and Lim, Woosang and Kim, Jeonghee and Ha, Jung-Woo and Zhang, Byoung-Tak},
journal={arXiv preprint arXiv:1610.04325},
year={2016}
}
@inproceedings{hamilton2017inductive,
title={Inductive representation learning on large graphs},
author={Hamilton, Will and Ying, Zhitao and Leskovec, Jure},
booktitle={Advances in Neural Information Processing Systems},
pages={1024--1034},
year={2017}
}
@article{dhillon2007weighted,
title={Weighted graph cuts without eigenvectors a multilevel approach},
author={Dhillon, Inderjit S and Guan, Yuqiang and Kulis, Brian},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={29},
number={11},
year={2007},
publisher={IEEE}
}
@article{springenberg2014striving,
title={Striving for simplicity: The all convolutional net},
author={Springenberg, Jost Tobias and Dosovitskiy, Alexey and Brox, Thomas and Riedmiller, Martin},
journal={arXiv preprint arXiv:1412.6806},
year={2014}
}
@inproceedings{kingma2014adam,
title={Adam: A method for stochastic optimization},
author={Kingma, Diederik P and Ba, Jimmy},
booktitle={International Conference on Learning Representations (ICLR)},
journal={arXiv preprint arXiv:1412.6980},
year={2015}
}
@article{wale2008comparison,
title={Comparison of descriptor spaces for chemical compound retrieval and classification},
author={Wale, Nikil and Watson, Ian A and Karypis, George},
journal={Knowledge and Information Systems},
volume={14},
number={3},
pages={347--375},
year={2008},
publisher={Springer}
}
@article{schomburg2004brenda,
title={BRENDA, the enzyme database: updates and major new developments},
author={Schomburg, Ida and Chang, Antje and Ebeling, Christian and Gremse, Marion and Heldt, Christian and Huhn, Gregor and Schomburg, Dietmar},
journal={Nucleic acids research},
volume={32},
number={suppl\_1},
pages={D431--D433},
year={2004},
publisher={Oxford University Press}
}
@article{debnath1991structure,
title={Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity},
author={Debnath, Asim Kumar and Lopez de Compadre, Rosa L and Debnath, Gargi and Shusterman, Alan J and Hansch, Corwin},
journal={Journal of medicinal chemistry},
volume={34},
number={2},
pages={786--797},
year={1991},
publisher={ACS Publications}
}
@article{borgwardt2005protein,
title={Protein function prediction via graph kernels},
author={Borgwardt, Karsten M and Ong, Cheng Soon and Sch{\"o}nauer, Stefan and Vishwanathan, SVN and Smola, Alex J and Kriegel, Hans-Peter},
journal={Bioinformatics},
volume={21},
number={suppl\_1},
pages={i47--i56},
year={2005},
publisher={Oxford University Press}
}
@misc{KKMMN2016,
title = {Benchmark Data Sets for Graph Kernels},
author = {Kristian Kersting and Nils M. Kriege and Christopher Morris and Petra Mutzel and Marion Neumann},
year = {2016},
url = {http://graphkernels.cs.tu-dortmund.de}
}
@article{hinton2012improving,
title={Improving neural networks by preventing co-adaptation of feature detectors},
author={Hinton, Geoffrey E and Srivastava, Nitish and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan R},
journal={arXiv preprint arXiv:1207.0580},
year={2012}
}
@article{achanta2012slic,
title={SLIC superpixels compared to state-of-the-art superpixel methods},
author={Achanta, Radhakrishna and Shaji, Appu and Smith, Kevin and Lucchi, Aurelien and Fua, Pascal and S{\"u}sstrunk, Sabine},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={34},
number={11},
pages={2274--2282},
year={2012},
publisher={IEEE}
}
@article{simonyan2014very,
title={Very deep convolutional networks for large-scale image recognition},
author={Simonyan, Karen and Zisserman, Andrew},
journal={arXiv preprint arXiv:1409.1556},
year={2014}
}
@article{russakovsky2015imagenet,
title={Imagenet large scale visual recognition challenge},
author={Russakovsky, Olga and Deng, Jia and Su, Hao and Krause, Jonathan and Satheesh, Sanjeev and Ma, Sean and Huang, Zhiheng and Karpathy, Andrej and Khosla, Aditya and Bernstein, Michael and others},
journal={International Journal of Computer Vision},
volume={115},
number={3},
pages={211--252},
year={2015},
publisher={Springer}
}
@article{everingham2010pascal,
title={The pascal visual object classes (voc) challenge},
author={Everingham, Mark and Van Gool, Luc and Williams, Christopher KI and Winn, John and Zisserman, Andrew},
journal={International journal of computer vision},
volume={88},
number={2},
pages={303--338},
year={2010},
publisher={Springer}
}
@inproceedings{kriege2016valid,
title={On valid optimal assignment kernels and applications to graph classification},
author={Kriege, Nils M and Giscard, Pierre-Louis and Wilson, Richard},
booktitle={Advances in Neural Information Processing Systems},
pages={1623--1631},
year={2016}
}
@inproceedings{de2013unsupervised,
title={Unsupervised feature learning for classification of outdoor 3d scans},
author={De Deuge, Mark}
}
@inproceedings{chen2018iterative,
author = {Xinlei Chen and Li-Jia Li and Li Fei-Fei and Abhinav Gupta},
title = {Iterative Visual Reasoning Beyond Convolutions},
booktitle = {Proc. CVPR},
Year = {2018}
}
@inproceedings{knyazev2018spectral,
title={Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules},
author={Knyazev, Boris and Lin, Xiao and Amer, Mohamed R and Taylor, Graham W},
booktitle={NeurIPS Workshop on Machine Learning for Molecules and Materials},
journal={arXiv preprint arXiv:1811.09595},
year={2018}
}
@inproceedings{xu2018how,
title={How Powerful are Graph Neural Networks?},
author={Keyulu Xu and Weihua Hu and Jure Leskovec and Stefanie Jegelka},
booktitle={International Conference on Learning Representations (ICLR)},
year={2019}
}
@inproceedings{velivckovic2018deep,
title={Deep graph infomax},
author={Veli{\v{c}}kovi{\'c}, Petar and Fedus, William and Hamilton, William L and Li{\`o}, Pietro and Bengio, Yoshua and Hjelm, R Devon},
booktitle={International Conference on Learning Representations (ICLR)},
journal={arXiv preprint arXiv:1809.10341},
year={2019}
}
@inproceedings{ying2018hierarchical,
title={Hierarchical graph representation learning with differentiable pooling},
author={Ying, Zhitao and You, Jiaxuan and Morris, Christopher and Ren, Xiang and Hamilton, Will and Leskovec, Jure},
booktitle={Advances in Neural Information Processing Systems},
pages={4805--4815},
year={2018}
}
@inproceedings{ioffe2015batch,
author = {Ioffe, Sergey and Szegedy, Christian},
title = {Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift},
booktitle={Proceedings of the 32nd International Conference on Machine Learning (ICML)},
year = {2015}
}
@article{srivastava2014dropout,
title={Dropout: a simple way to prevent neural networks from overfitting},
author={Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan},
journal={The Journal of Machine Learning Research},
volume={15},
number={1},
pages={1929--1958},
year={2014},
publisher={JMLR. org}
}
@inproceedings{simonovsky2018graphvae,
title={Graphvae: Towards generation of small graphs using variational autoencoders},
author={Simonovsky, Martin and Komodakis, Nikos},
booktitle={International Conference on Artificial Neural Networks},
pages={412--422},
year={2018},
organization={Springer}
}
@article{arbelaez2010contour,
title={Contour detection and hierarchical image segmentation},
author={Arbelaez, Pablo and Maire, Michael and Fowlkes, Charless and Malik, Jitendra},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={33},
number={5},
pages={898--916},
year={2010},
publisher={IEEE}
}
@inproceedings{graphunet2018,
title={Graph {U-Net}},
author={Gao, Hongyang and Ji, Shuiwang},
booktitle={Proceedings of the 36th International Conference on Machine Learning (ICML)},
year={2019}
}
@inproceedings{khasanova2017graph,
title={Graph-based isometry invariant representation learning},
author={Khasanova, Renata and Frossard, Pascal},
booktitle={Proceedings of the 34th International Conference on Machine Learning-Volume 70},
pages={1847--1856},
year={2017},
organization={JMLR. org}
}
@inproceedings{prabhu2015attribute,
title={Attribute-graph: A graph based approach to image ranking},
author={Prabhu, Nikita and Venkatesh Babu, R},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={1071--1079},
year={2015}
}
@article{kiros2014unifying,
title={Unifying visual-semantic embeddings with multimodal neural language models},
author={Kiros, Ryan and Salakhutdinov, Ruslan and Zemel, Richard S},
journal={arXiv preprint arXiv:1411.2539},
year={2014}
}
@article{smith2017don,
title={Don't decay the learning rate, increase the batch size},
author={Smith, Samuel L and Kindermans, Pieter-Jan and Ying, Chris and Le, Quoc V},
journal={arXiv preprint arXiv:1711.00489},
year={2017}
}
@inproceedings{hu2019language,
title={Language-conditioned graph networks for relational reasoning},
author={Hu, Ronghang and Rohrbach, Anna and Darrell, Trevor and Saenko, Kate},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={10294--10303},
year={2019}
}
@inproceedings{beckham2019adversarial,
title={On Adversarial Mixup Resynthesis},
author={Beckham, Christopher and Honari, Sina and Verma, Vikas and Lamb, Alex M and Ghadiri, Farnoosh and Hjelm, R Devon and Bengio, Yoshua and Pal, Chris},
booktitle={Advances in Neural Information Processing Systems},
pages={4348--4359},
year={2019}
}
@article{rong2019truly,
title={The truly deep graph convolutional networks for node classification},
author={Rong, Yu and Huang, Wenbing and Xu, Tingyang and Huang, Junzhou},
journal={arXiv preprint arXiv:1907.10903},
year={2019}
}
@article{cogswell2015reducing,
title={Reducing overfitting in deep networks by decorrelating representations},
author={Cogswell, Michael and Ahmed, Faruk and Girshick, Ross and Zitnick, Larry and Batra, Dhruv},
journal={arXiv preprint arXiv:1511.06068},
year={2015}
}
@inproceedings{wang2020orthogonal,
title={Orthogonal convolutional neural networks},
author={Wang, Jiayun and Chen, Yubei and Chakraborty, Rudrasis and Yu, Stella X},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={11505--11515},
year={2020}
}
@article{bansal2018can,
title={Can we gain more from orthogonality regularizations in training deep cnns?},
author={Bansal, Nitin and Chen, Xiaohan and Wang, Zhangyang},
journal={arXiv preprint arXiv:1810.09102},
year={2018}
}
@inproceedings{huang2018decorrelated,
title={Decorrelated batch normalization},
author={Huang, Lei and Yang, Dawei and Lang, Bo and Deng, Jia},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={791--800},
year={2018}
}
@article{rodriguez2016regularizing,
title={Regularizing cnns with locally constrained decorrelations},
author={Rodr{\'\i}guez, Pau and Gonzalez, Jordi and Cucurull, Guillem and Gonfaus, Josep M and Roca, Xavier},
journal={arXiv preprint arXiv:1611.01967},
year={2016}
}
@article{ghiasi2018dropblock,
title={Dropblock: A regularization method for convolutional networks},
author={Ghiasi, Golnaz and Lin, Tsung-Yi and Le, Quoc V},
journal={arXiv preprint arXiv:1810.12890},
year={2018}
}
@article{locatello2020object,
title={Object-centric learning with slot attention},
author={Locatello, Francesco and Weissenborn, Dirk and Unterthiner, Thomas and Mahendran, Aravindh and Heigold, Georg and Uszkoreit, Jakob and Dosovitskiy, Alexey and Kipf, Thomas},
journal={arXiv preprint arXiv:2006.15055},
year={2020}
}
@article{burgess2019monet,
title={Monet: Unsupervised scene decomposition and representation},
author={Burgess, Christopher P and Matthey, Loic and Watters, Nicholas and Kabra, Rishabh and Higgins, Irina and Botvinick, Matt and Lerchner, Alexander},
journal={arXiv preprint arXiv:1901.11390},
year={2019}
}
@article{engelcke2019genesis,
title={Genesis: Generative scene inference and sampling with object-centric latent representations},
author={Engelcke, Martin and Kosiorek, Adam R and Jones, Oiwi Parker and Posner, Ingmar},
journal={arXiv preprint arXiv:1907.13052},
year={2019}
}
@inproceedings{andreas2016neural,
title={Neural module networks},
author={Andreas, Jacob and Rohrbach, Marcus and Darrell, Trevor and Klein, Dan},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={39--48},
year={2016}
}
@inproceedings{hu2017learning,
title={Learning to reason: End-to-end module networks for visual question answering},
author={Hu, Ronghang and Andreas, Jacob and Rohrbach, Marcus and Darrell, Trevor and Saenko, Kate},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={804--813},
year={2017}
}
@inproceedings{stone2017teaching,
title={Teaching compositionality to cnns},
author={Stone, Austin and Wang, Huayan and Stark, Michael and Liu, Yi and Scott Phoenix, D and George, Dileep},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5058--5067},
year={2017}
}
@article{sylvain2019locality,
title={Locality and compositionality in zero-shot learning},
author={Sylvain, Tristan and Petrini, Linda and Hjelm, Devon},
journal={arXiv preprint arXiv:1912.12179},
year={2019}
}
@inproceedings{naeem2021learning,
title={Learning graph embeddings for compositional zero-shot learning},
author={Naeem, Muhammad Ferjad and Xian, Yongqin and Tombari, Federico and Akata, Zeynep},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={953--962},
year={2021}
}
@article{ruis2021independent,
title={Independent Prototype Propagation for Zero-Shot Compositionality},
author={Ruis, Frank and Burghours, Gertjan and Bucur, Doina},
journal={arXiv preprint arXiv:2106.00305},
year={2021}
}
@inproceedings{tokmakov2019learning,
title={Learning compositional representations for few-shot recognition},
author={Tokmakov, Pavel and Wang, Yu-Xiong and Hebert, Martial},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={6372--6381},
year={2019}
}
@article{baradad2021learning,
title={Learning to See by Looking at Noise},
author={Baradad, Manel and Wulff, Jonas and Wang, Tongzhou and Isola, Phillip and Torralba, Antonio},
journal={arXiv preprint arXiv:2106.05963},
year={2021}
}
@inproceedings{demirel2017attributes2classname,
title={Attributes2classname: A discriminative model for attribute-based unsupervised zero-shot learning},
author={Demirel, Berkan and Gokberk Cinbis, Ramazan and Ikizler-Cinbis, Nazli},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={1232--1241},
year={2017}
}
@inproceedings{ul2019explaining,
title={Explaining visual classification using attributes},
author={ul Hassan, Muneeb and Mulhem, Philippe and Pellerin, Denis and Qu{\'e}not, Georges},
booktitle={2019 International Conference on Content-Based Multimedia Indexing (CBMI)},
pages={1--6},
year={2019},
organization={IEEE}
}
@inproceedings{zeiler2014visualizing,
title={Visualizing and understanding convolutional networks},
author={Zeiler, Matthew D and Fergus, Rob},
booktitle={European conference on computer vision},
pages={818--833},
year={2014},
organization={Springer}
}
@article{kaneko2021debiasing,
title={Debiasing pre-trained contextualised embeddings},
author={Kaneko, Masahiro and Bollegala, Danushka},
journal={arXiv preprint arXiv:2101.09523},
year={2021}
}
@article{lowe2004distinctive,
title={Distinctive image features from scale-invariant keypoints},
author={Lowe, David G},
journal={International journal of computer vision},
volume={60},
number={2},
pages={91--110},
year={2004},
publisher={Springer}
}
@inproceedings{long2015fully,
title={Fully convolutional networks for semantic segmentation},
author={Long, Jonathan and Shelhamer, Evan and Darrell, Trevor},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={3431--3440},
year={2015}
}
@article{simonyan2014two,
title={Two-stream convolutional networks for action recognition in videos},
author={Simonyan, Karen and Zisserman, Andrew},
journal={arXiv preprint arXiv:1406.2199},
year={2014}
}
@article{vondrick2016generating,
title={Generating videos with scene dynamics},
author={Vondrick, Carl and Pirsiavash, Hamed and Torralba, Antonio},
journal={Advances in neural information processing systems},
volume={29},
pages={613--621},
year={2016}
}
@inproceedings{dosovitskiy2015flownet,
title={Flownet: Learning optical flow with convolutional networks},
author={Dosovitskiy, Alexey and Fischer, Philipp and Ilg, Eddy and Hausser, Philip and Hazirbas, Caner and Golkov, Vladimir and Van Der Smagt, Patrick and Cremers, Daniel and Brox, Thomas},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={2758--2766},
year={2015}
}
@article{wang2017video,
title={Video salient object detection via fully convolutional networks},
author={Wang, Wenguan and Shen, Jianbing and Shao, Ling},
journal={IEEE Transactions on Image Processing},
volume={27},
number={1},
pages={38--49},
year={2017},
publisher={IEEE}
}
@inproceedings{shelhamer2016clockwork,
title={Clockwork convnets for video semantic segmentation},
author={Shelhamer, Evan and Rakelly, Kate and Hoffman, Judy and Darrell, Trevor},
booktitle={European Conference on Computer Vision},
pages={852--868},
year={2016},
organization={Springer}
}
@article{gu2018recent,
title={Recent advances in convolutional neural networks},
author={Gu, Jiuxiang and Wang, Zhenhua and Kuen, Jason and Ma, Lianyang and Shahroudy, Amir and Shuai, Bing and Liu, Ting and Wang, Xingxing and Wang, Gang and Cai, Jianfei and others},
journal={Pattern Recognition},
volume={77},
pages={354--377},
year={2018},
publisher={Elsevier}
}
@article{levie2018cayleynets,