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Abstract

Ethereum is a distributed blockchain platform that executes programs stored on the blockchain

known as smart contracts. These smart contracts tend to have limited functionality, although they can be

arbitrarily complex. The Ethereum Virtual Machine (EVM) is a simple stack machine that holds up to

1024 elements at any time. This machine executes transactions across each node on the network which

are validated by the miners via a consensus algorithm known as “Proof of Work". Because transactions

on the blockchain are considered “immutable", it is important that programs behave in the way they are

intended to behave. Vulnerabilities may arise from incorrectly written contracts, allowing users to inter-

act with a contract in a way not intended by the developer. These vulnerabilities can lead to devastating

exploits, such as the hack of the TheDao and the Parity multi-signature smart contract, which lead to the

loss of over USD$50 million and USD$30 million of Ether respectively. Measuring gas costs, the costs

of performing computations on the network, is needed to both improve the efficiency of smart contracts

and detect resource-based vulnerabilities that can consume all the gas in a transaction. Performing this

analysis is challenging, as it requires a deep technical understanding of how both the EVM and smart

contract functionality works. In this paper, we create an accurate and scalable method to analyze gas

costs. We also use an integer linear program and an algorithm using shortest-paths to calculate the “max-

imum frequency" of an edge in our control-flow graph, allowing us to determine the upper bound in the

number of iterations of a loop for a given gas budget. In addition, we build logic specifications in dat-

alog using the Soufflé engine using maximum frequencies to detect common gas-related vulnerabilities

in smart contracts. Buterin (2016) stated: “Formal verification can be layered on top. One simple use

case is as a way of proving termination, greatly mitigating gas-related issues" (3). This thesis attempts

to address these issues.
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CHAPTER 1

Introduction

Ethereum is a blockchain inspired by Bitcoin, the first cryptocurrency developed and released by an

individual (or individuals) under the pseudonym “Satoshi Nakamoto" in 2009. The main purpose of

Bitcoin was to create “a purely peer-to-peer version of electronic cash" (30). In contrast, Ethereum’s aim

is arguably larger - to create a distributed computer that can execute arbitrarily complex contracts. These

are often referred to as “smart contracts", and can be used to represent real-life entities and agreements,

such as organizations, crowd funding campaigns, properties and deeds, among many others including

allowing people to create their own versions of electronic cash governed by the rules of the contract

(often known as “programmable money").

Smart contracts are programs that are stored on the blockchain. They have a unique address, permanent

storage and persistent memory. Accounts on Ethereum can communicate to a smart contract by using

its public address and specifying what function to call. To create a smart contract, a developer writes

a program using a high-level language that compiles to bytecode, which represents a hash of all the

contract’s properties. This hash is then sent in a transaction by an address to the blockchain, which

miners include in a block.

All operations executed by smart contracts and transactions require gas, a concept that Ethereum in-

vented. The purpose of gas is to ensure that users of the network pay for their computations, creating

the incentive to run transactions as efficiently as possible. The address initiating a transaction gives a

gas budget, a finite quantity representing the total amount of gas the address is willing to spend in order

to complete the transaction. Hence, computations are resource limited - they can only be performed up

to the gas budget.

To pay for gas, an address needs to forward some Ether in the transaction. Ether (ETH) is a cryptocur-

rency used to pay for computations done on the network, and can be traded on multiple exchanges and

between different users in exchange for fiat currency or other cryptocurrencies (20). Ether is converted

1



1 INTRODUCTION 2

to gas according to the conversion rate specified by the gasPrice, which converts one unit of gas to a

given number of Wei (one Wei equals one over eighteen-zeros worth of ETH). Miners are incentivized

to include transactions in the blockchain with a higher gasPrice, as they earn more ETH.

The amount of Wei forwarded with a transaction is given by the formula (8):

Wei = gasPrice ∗ gas_budget (1.1)

Ethereum is considered to be a Turing complete machine, as smart contracts can execute any kind of

computation. Hence, the Turing completeness of Ethereum increases the complexity and potential for

vulnerabilities to exist in smart contracts. Due to theoretical limitations (e.g. the halting problem), there

are no means to fully automatically check the correctness of smart contracts. Practically, however, static

analysis is applicable (with the acceptance of false positives) to find vulnerabilities. This is achieved by

using graph theory to map patterns that may by indicative of a vulnerability at the EVM-level to logical

statements. Thus, no matter the complexity of the code and what is written in a higher-level language,

static analysis should be able to detect vulnerabilities that may appear subtle to the developer.

FIGURE 1.1: How new smart contracts are deployed on the blockchain
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A typical work-flow for deploying smart-contracts written in Solidity (19) is shown in Figure 1.1.

A developer writes a program in a higher level language such as Solidity. This program is run through

a compiler that translates the higher level code into Ethereum bytecode (a string of characters). This

contract is sent to the network via a client such as Parity or Go-Ethereum. The miners then include the

contract bytecode into a particular block that is mined and validated, becoming part of the blockchain.

The contract now exists publicly for individuals to interact with using services such as web3js, which

performs remote procedure calls (RPC) to the blockchain via a client.

When a transaction is created, it consists of the following mandatory parameters:

(1) From: Address the transaction is being sent from.

(2) To: Address the transaction is being sent to.

(3) gas: The amount of gas to be forwarded in the transaction (a positive integer). Note that unused

gas is refunded, but all gas is consumed if an exception is thrown. This is the gas budget.

(4) gasPrice: The conversion rate between gas and Wei. All transactions are paid for in ETH,

where one ETH equals one followed by 18 zeros Wei. The higher the gasPrice, the more

likely a miner will include your transaction in their block. Note that gasPrice is completely

separate from the gas cost in the EVM level.

There is a gap between high-level source code in Solidity and actual resource costs of the translated

solidity program running on the EVM. It is challenging to determine the output of a given transaction

without a detailed understanding of the underlying EVM, as most developers write their code in a higher

level language such as Solidity without sufficiently understanding the technology(2). Yet gas costs are

determined purely by the EVM, and not high-level languages that compile to it.

Poorly-written contracts may lead to certain execution paths that consume a large quantity (if not all) of

the gas sent in a transaction, and may expire prematurely. The premature termination of smart contracts,

hence, may lead to exploitable program states of smart contracts. For each instruction ( i.e OP CODE)

executed, the gas budget is depleted by a certain amount depending on the instruction executed. When

the gas budget is spent, an “out-of-gas” exception is automatically thrown. An exception causes the

EVM to execute a JUMP instruction to an invalid destination on the stack. As a consequence, all changes

to the state by the transaction are rolled back. Note that an exception may occur for other reasons,

including if the wrong parameters are specified when calling a function or if the instruction THROW is

present. In all cases, the entire gas budget is consumed and paid to the miner of the block. Measuring
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gas is important, as a user would like to send as little gas as possible as there is always a risk that all of

the gas might be consumed in an exception.

Many exploits occur due to contract-to-contract communication which can lead to issues such as race

conditions, as a smart contract developer does not know what code is contained in other contracts that

may interact with theirs. In terms of gas, an external contract may consume an arbitrary amount of

gas when called because the programs execution is given to the external contract, who may execute

whatever code is written in their smart contract. Thus, a developer must assume that any contract-to-

contract communication could, in the worse case, lead to an exception being thrown. Failure to consider

this may lead to vulnerabilities as described below.

Furthermore, gas constraints limit the size of loops. A loop may become too big that iterating through

it requires a gas budget bigger than the block gas limit (the limit set by the network itself). Thus, we

want to determine if a loop bound is too large, or if a pattern exists such that a loop bound may become

too big overtime, for example, if the bound is determined by the number of addresses stored as an

array in the smart contract, where an address can add itself to that list by calling another function. For

example, a contract called Government had 1100 ETH (worth USD$340,000) stuck in it as in order

for the winner to claim the jackpot, an array full of participants needed to be cleared, where, totaling

5.5 million, the operation consumed more gas than the block gas limit itself! (15) (14). In addition,

McCorry, Shahandashti and Feng Hao (2017) demonstrated that their privacy-preserving voting system

allowed only 60 votes to be processed in a loop before hitting the then block gas limit of 4.7million,

requiring votes to be batched across multiple transactions(27).

1.1 Problem Statement

This work describes a more accurate method of statically calculating gas costs with each statement,

and hence the overall cost of each execution path within a smart contract. Furthermore, we introduce a

potential new class of exploits stemming from the resource constraints of smart contracts. As previously

mentioned, these new exploits can be a significant threat for smart contracts stored on the block chain,

effectively freezing the smart contract’s functionality and the tokens stored within it. These threats

come from external contract calls and the assumptions made by programmers that their smart contract

can deal with ever-growing storage without realizing that loops or the reassignment of the storage values

are expensive.
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Resource-based exploits include the following three:

(1) Unbounded and Dynamically-bounded Loops: If a loop is unbounded or whose bounds

dynamically grows as a result of the growth in storage or memory, then it is guaranteed to

reach a point where the cost of executing the loop will exceed the block gas limit.

(2) Wallet Griefing: If a call to an external contract occurs within a loop, that loop might throw an

exception and cause the entire transaction to roll back, meaning the loop may never complete.

(3) Mass reassignment of Storage: If storage is initially set or re-set and the current storage is

too large, then such an operation might exceed the block gas limit.

The contribution of this work is as follows:

(1) A new class of exploits that rely on the consumption of gas for each executed statement where

the gas budget of a program is always finite and positive.

(2) A new maximum frequency analysis for statements in smart contracts. The maximum fre-

quency analysis is expressed as a mathematical program. We first executed it as an Integer

Linear Program and later found that this problem can be solved using an algorithm that runs in

polynomial time based on shortest path searches using Dijkstra’s algorithm.

(3) A new semantic description of resource exploits expressed in logic that captures potential re-

source exploits using data-flow, control-flow, and maximum frequency analysis results. The

logic of the resource exploits is executable by a logic synthesis tool called Soufflé. The syn-

thesis tool produces a highly efficient static program analysis tool in C++.

(4) Implementation of the proposed static analysis to mathematically determine if a given resource-

vulnerability exists within a particular smart contract.

(5) Experimental data demonstrating the performance of our polynomial algorithm to the Inte-

ger Linear Program on most smart contracts currently deployed on the Ethereum Mainnet

blockchain, the number of contracts with loops in them, the accuracy of our logical specifica-

tions and the number of existing smart contracts that have resource-exploits present.

The organization of this thesis is as follows. In chapter 2 we introduce a new class of exploits that take

advantage of the finite resource allotted to a smart contract. In chapter 3 we introduce new means to find

resource exploits and the concept of maximum frequencies and demonstrate two methods of calculating

them, modeling it first as an integer linear problem, and then deriving a polynomial algorithm. We also

describe how this can be used in our exploit analysis. In Chapter 4 we provide experimental data for
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the Ethereum blockchain. In Chapter 6 we outline some suggestions to improve our framework, and in

Chapter 7 we survey related work.



CHAPTER 2

Resource Exploits

A vulnerability is a weakness in a smart contract that, when taken advantage of, may lead to an unex-

pected or undesirable result. Exploits use vulnerabilities to cause some damage to the participants of

the smart contract, most commonly denying access to the smart contract or stealing tokens such as ETH

stored there.

Most exploits occur due to the ability of smart contracts to interact with one another via message calls.

A message call is an object that allows data and the execution of a transaction to pass from one smart

contract to another temporarily. The execution path returns to the original after a value is returned. A

certain amount of gas is also forwarded to that contract address, which is subtracted from the original gas

budget and the remaining forwarded budget is refunded to the caller when the message call is returned.

This allows another smart contract to perform some execution and then return to the original contract,

or even call another contract (leading to a chain of message calls between multiple smart contracts).The

main purpose of message calling is to increase the functionality and flexibility of smart contracts by

allowing smart contracts to communicate with each other and pass data back and forth.

However, because a message call allows the target contract address to execute arbitrary code (within

the confines of the forwarded gas budget), the contract may have some malicious code that causes

unexpected behaviour. The malicious contract may manipulate the state of the victim contract causing

the transaction to fail unexpectedly (as in the case of Wallet Griefing described below) and may even

prevent all transactions incorporating that execution path from completing.

As every instruction in a transaction needs to be executed, the called contracts is forwarded an amount

of gas gf deducted from the gas budget b. The OP CODE gas returns the remaining b at that point in

the transaction’s execution, which can be forwarded onto the called contract:

gf = b− c (2.1)

7



2 RESOURCE EXPLOITS 8

FIGURE 2.1: A simple message call between a malicious and victim contract. Note
that the contract being called can execute arbitrary code in its fallback function, which
could include throwing, causing the rest of the execution to fail, or perform recursive
calls to exploit the calling contract’s functionality.

where c is the gas consumed by the external contract.

However, by default, if a message call is generated by the Solidity function send(x) or transfer(x),

where x is some amount in Wei, then the forwarded gas amount is the “gas stipend", fixed at 2300 Gas.

Note that this is also deducted from b(19). If the gas stipend plus the 21000 gas required for a transfer

of Wei is greater than b, then the execution will throw.

Note that if all of gf is consumed, then the execution will throw as well, no matter the remaining b.

This means, for example, that any contract you call could always throw, thus revering state changes to

the blockchain. Given that you are likely not to know what contracts will call your contract (unless you

have explicitly “white-listed" their addresses, meaning only those contracts can call certain functions in

your contract), then a developer needs to assume that any message calls could lead to an exception being

thrown.

Inefficient coding patterns can also exist with the smart contract’s internal execution paths. The execu-

tion of a function within a smart contract does not necessarily consumes a fixed amount of gas. The gas

consumption of a contract depends on the data and control flow of smart contracts. For example, a smart

contract may also allow loops to be bounded by arrays that grow in size over time as more entries are

added, for example if a user adds an address to an array which keeps track of all members of a partic-

ular organization represented by the contract. A smart contract may also attempt to clear this array by

changing all values to zero, which requires a significant amount of gas (as described below). Although
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these problems are not caused by an attack or malicious contract, they are weak coding patterns which

quickly lead to the consumption of all gas.

As a consequence the analysis of the gas cost per contract is hard because we not only need to count

the number of operations that take place, but also consider loops and other execution paths (such as

recursion) that cause certain operations to repeat, thus consuming gas. This thesis attempts to identify

these coding patterns and notify the user of vulnerabilities that may arise from them.

2.1 Message Calls

A message call is the event of calling a smart contract from another contract. When a contract receives

a message, it will decode any data sent and the EVM will perform its operations in the context of that

contract and the message will be "acted upon"(51). A transaction is essentially a write-operation to

the blockchain consisting of a collection of message calls that take place. Note that the miners do not

care about the number of message calls within a transaction, as only transactions can lead to permanent

changes in the state on the blockchain. When a transaction is sent to the Ethereum network via a node,

all nodes on the network check to make sure the transaction is valid (i.e the execution of EVM operations

for a set of instructions does not lead to an exception). The transaction is then mined by a miner into a

block. The block is then pushed into the blockchain, along with a records of any changes to state (for

example, changing the value of some storage).

When a message call is created and sent, the input data consists of three parts(36):

(1) 4 bytes in length - A Keccak hash of the function signature (the function of the smart contract

the transaction is targeting).

(2) 32 bytes in length - The 20 byte address the transaction is sending to (note that 12 extra 0s

added to the left of the address to create 32 bytes.

(3) 32 bytes in length - The msg.data to send across.

There are two types of addresses in Ethereum: a wallet address and a contract address. A wallet address

can be used to store Ethereum and other tokens run on top of the Ethereum network and interact with

other wallet or contract addresses. A contract address represents a smart contract that other wallet or

contracts can communicate with and execute the code written in the smart contract itself. Each address

is exactly 160-bits long, and is used to identify accounts on the blockchain.
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When a contract performs a message call to a wallet, by-default the function signature is blank. Because

wallets have no fallback function, no extra computation is performed by the wallet itself.

However, when a contract performs a message call to another wallet, if a function signature matches

the signature of a function in the external contract, the function’s computation is executed. If the func-

tion signature is blank, the contract will execute the contract’s fallback function (if it exists) which

many include any amount of arbitrary computation. It is this arbitrary computation that leads to a

large number of potential vulnerabilities. A vulnerable contract, depending on the desired execution,

may be vulnerable to a malicious contract that execute some code that takes exploits the vulnerabil-

ity. An example is theDAO hack, where a malicious contract was able to keep executing the same

withdrawDAO() function by placing the function in the malicious contract’s fallback function, so

that is would be called repeated after the call.value()() message call was executed. This exploit

is known as "reentrancy", and will not be explored in this paper but has been previously implemented in

the logical specifications of the original security analysis pipeline as described in Figure 1.1.

FIGURE 2.2: A simple message call example using the transfer(x) function, where x is

some amount of Wei

2.2 GAS costs

Gas is a “unit of payment” used by the address initiating a transaction to pay for the execution of OP

CODES by other nodes on the network and reward the miners for confirming the result. The costs of

each OP CODE are described in the “Ethereum Yellow Paper”, a technical specification kept up to date

with the latest version of the network(51). Some operations have a fixed gas costs. For example, the

ADD OP CODE has a gas cost of 3. However, some operations have a variable gas cost according to a

specific formula and the data it is dealing with. Some of these variable costs and how our static analyzer

deals with them are described below. There is also a gas-limit per block, which represents the maximum
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amount of gas that can be spent in a single block. Code written in a higher-level languages such as

Solidity and compiled to bytecode. Essentially, the code provides instructions to the EVM, instructing

it to execute a series of OP CODES. Gas is deducted from the gas budget for each OP CODE executed

by the EVM in the set of instructions.

A user cannot specify any arbitrary amount for the gas budget b, as the Ethereum network imposes

specific constraints on how much gas can be spent on a single transaction. These represent both a lower

and an upper-bound to the amount of computation that is performed by the network.

All transactions, no matter what computation is performed, will consume a minimum of 21000 gas plus

the cost of executing any function specified in the transaction’s function signature. This cost arises

because it is the amount of gas spent in order to send a transaction from one address to another(51):

Gtransaction = 21000 (2.2)

Because 21000 is paid initially for any transaction made, and executing state changes to the blockchain

requires a transaction, our gas analyzer will automatically deduct 21000 gas when analyzing a smart

contract. Note that neither Chen et al (2017) or Luu et al (2016) take this into account when performing

their own analysis of gas consumption. A user may by mislead to believe that a certain execution path in

a transaction took some amount of gas, without realizing that 21000 gas was already consumed simply

by submitting a transaction, regardless of the execution path it traverses.

Hence, if a user attempts to set b < 21000, the gas analyzer will print an error to the console:

ERROR: Minimum 21000 gas needs to be specified for the gas budget.

There is also a gas limit per block agreed upon by the miners known as the block gas limit. The block

gas limit is the amount of computation that can be included in any one block. Hence, if a user attempts

to perform a transaction that exceeds the block gas limit, an exception will be thrown:

Error: Exceeds block gas limit

A transaction needs to conform to the following inequality as a necessary condition for the transaction

to be valid (51):
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Tg 6 BHl − `(BR)u (2.3)

Where:

(1) Tg: The gasLimit for a given transaction T specified by the caller.

(2) BHl: The current block gas limit.

(3) `(BR)u: The gas that has been consumed by prior transactions for the given block B.

Note that `(BR)u cannot be known in advance using static analysis. Hence, we assume that no prior

transactions have been entered into the block when determining the block gas limit (i.e we assume

`(BR)u = 0). A transaction which is less than or equal to the block gas limit can still be included into a

block, assuming that the miner accepts that transaction, and only that transaction. Hence, we check that:

Tg 6 BHl (2.4)

The block gas limit is also dynamic and changes after each block is mined depending on how the miners

vote, as they ultimately determine the gas limit. However, the protocol only allows miners to change

the block gas limit within certain bounds. These changes follow the semantics as outlined by Wood

(2017) (51). Hence, the gas limit Hl of the block H must fulfill the following relations:

Hl < P (H)Hl +

⌊
P (H)Hl
1024

⌋
∧ (2.5)

Hl > P (H)Hl −
⌊
P (H)Hl
1024

⌋
∧ (2.6)

Hl ≥ 125000 (2.7)

where P (H)Hl is the previous block.

Because we are interested in finding the upper gas limit, we assume the worst case when it comes to

determining the block gas limit, and hence we consider the equation:

Hl = P (H)Hl + 1−
⌊
P (H)Hl
1024

⌋
(2.8)

Note that this assumes that all of the miners will vote to decrease the block gas limit by the maximum

possible amount, and thus represents the minimum block gas limit possible for the next block. Hence,

we state that Hl is the current block gas limit we will test against. Checking against the block gas limit
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is important given that the gas limit has two restrictions. Firstly, it represents the hard upper gas limit

any transaction can take, regardless of the execution paths in a given smart contract or the amount of gas

forwarded in the transaction. Otherwise, the transaction will never be mined by the network. Secondly,

it can change significantly in a short period of time, thus changing the amount of computation allowed

by any single transaction. For example, between 9:20 UTC and 11:00 UTC on 29 June 2017, miners

voted to increase the gas limit by 33% from roughly 4.7 million to 6.3 million gas units per block(25).

Finding the current block gas limit for the next block in the sequence can be determined in two ways:

Firstly, we can find the current block gas limit by running a local Ethereum Node and executing the

GASLIMIT OP CODE on the previous mined block. This returns the block’s own gas limit. There

are many ways to return this data. For example, we can perform a Remote procedure call using the

"JSON RPC API" such as eth.getBlock("latest").gasLimit, which returns the gas limit as

an integer for the last block mined(18). Secondly, instead of having to rely on running a local Ethereum

Node to use the gas analyzer, we can use a third-party service that runs multiple nodes for us. For our

work, we have chosen to use EtherChain’s API (13), as this is generally considered to be a reputable third

party site that is an accurate representation of the current state of the Ethereum blockchain. EtherChain

basis its numbers on the data returned from a variety of full nodes running across the world. For each run

that is performed using the gas analyzer, we can perform an http request to the website which returns the

current block gas limit. Running the equation above will give us the minimum block gas limit possible

by the network.

There are some limitations with our analysis which leads to an over-estimation on the amount of gas for

certain operations. As previously mentioned, the SSTORE operation has two different costs depending

on the current value of storage. If SSTORE is performed on an empty storage value, changing this

storage value to a non-zero value, the operation costs 20000 gas. If the operation is performed on a

storage value that is non-zero (i.e there is some data stored at that 32-byte word), then the gas cost is

lower at 5000. These are described in the three equations below(51):

Gsset = 20000 (2.9)

Gsreset = 5000 (2.10)

Rsclear = −15000 (2.11)
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Because static analysis cannot predict in advance if a storage value is non-zero or zero (as that requires

dynamic analysis), we cannot determine if a SSTORE operation will cost 5000 or 20000. Since we

are interested in the upper bound, we take that all SSTORE operations will consume 20000 gas, which

assumes that the contract has no non-zero values in storage.

If storage is cleared (changed from a non-zero to a zero value - the default state) then 15000 gas is

deducted from the total gas spent in the transaction, as this is added to the refund counter. Moreover, the

SELFDESTRUCT OP CODE, which removes the contract and associated storage from the current state

of the blockchain, adds 24000 gas to the refund counter. The refund counter of a transaction keeps track

of how much gas to refund back to the caller after the EVM has finished execution - that is, when the

op code STOP is executed. Hence, we do not need to incorporate it for our analysis. Refunds exist as

data is cleared from the blockchain, reducing the storage size of the blockchain for all participants (50).

2.3 Exploits

2.4 Dynamic Loop Sizes

Loops in Solidity should be used sparingly as they are considered expensive. In a given transaction, a

gas budget b is required that must be enough to start at s, the start node, iterate over the loop (and any

statements in between) and continue to e, the end node. If the bound of a loop is determined by external

user input or by the behaviour of an external contract, then there is a risk that a loop will be too large

to cause an (out-of-gas) exception. Given that all data on the blockchain, including smart contracts, are

considered “immutable" whose functionality is expected to last forever (or until the ‘suicide‘ op code is

executed - thereby disabling the smart contract’s functionality) we can assume that at some point in the

future the bound will become too large for a given transaction to ever finish executing.

Solidity, “whose syntax is similar to that of JavaScript"(19), has syntax that can be arguably misleading.

For example, the term var has a data type of byte, and is not a generic variable for which a value of

any data type can be assigned to it unlike loosely typed languages such as Javascript. Instead, one can be

fooled into assigning an integer to var, when instead they are assigning the number of bytes to it! Since

the EVM stores bytes in 256-bit addresses, the length of var is at most 256. Therefore, any number

greater than 256 will lead to an integer overflow(34).
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For example:

uint causesOverflow = 512;

for (var i = 0; i<causesOverflow.length; i++){

\\ do stuff

}

will cause an integer overflow when i attempts to reach 257, but will instead overflow to zero again, and

hence the loop will keep executing until an out-of-gas exception is thrown.

Loop bounds that are determined by user inputs are particularly dangerous. Because a contract owner

does not know in advance how other contracts behave, the size of the loop may dynamically increase as

a result of a malicious user, or by accident due to the growth of an array.

For example, suppose we have a list of accounts, where each account is represented as a struct

consisting of a 160-bit contract or wallet address, and a positive balance pb where 0 ≤ pb ≤ 2256:

contract dynamicDividendPayments{

struct Account {

address a;

uint balance;

}

Account[] accounts;

function payDividends () returns (bool success) {

for(var i = 0; i < accounts.length; i++) {

uint tempBalance = accounts[i].balance;

accounts[i].balance = 0;

Account.address.send(tempBalance);

}

}

}

When the function payDividends() is called, it will loop over the list of structs, where the bound

set by i is determined by the number of structs in the list (i.e the length of the array accounts).
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On each iteration, the number of operations are performed in sequence: assigning the account balance

to a temporary variable of type uint, the account balance is set to 0, and the previous account balance

is sent to the address:

uint tempBalance = accounts[i].balance;

accounts[i].balance = 0;

Account.address.send(tempBalance);

These operations require a certain amount of gas to execute. Consequently, what happens when the

number of accounts grow? More gas will be spent for the transaction by executing the operations

account.length times. Eventually, the transaction will become too expensive and exceed the block-

gas limit set by the network. It will never be mined, and the transaction will throw an error (Error:

Exceeds block gas limit) in the web3js Javascript console.

Although one does not know the exact size of accounts.length when statically analyzing the con-

tract above (because we do not know the exact data input when the transaction is executed) we can

assume that should the loop bound by determined by user input, then the code is vulnerable to having

an unbounded loop. For instance, a malicious user may repeatedly create y number of wallets pro-

grammatically, where y is a large number, and seed each account with just enough ETH to create an

account on the contract above. If enough accounts are created such that the for loop will never cease

execution before reaching the block-gas limit, then calling payDividends() will always fail. In the

above example, accounts.length is determined by the number of addresses that are members of

this contract. More specifically, they create their own struct when they join.

By assuming the worst case scenario that a user-defined loop bound will eventually lead to an unbounded

loop, we can solve the problem in polynomial time as described in chapter 3, rather than having to iterate

through the loop dynamically until all gas is exhausted or the loop terminates.

2.5 Wallet Griefing

When a call to an external address is made, the transaction’s program execution counter is given to that

external address. This gives rise to potential vulnerabilities in the smart contract, as the contract does

not know exactly what computation will be done by that external address, and will only see the return

values. Hence, a developer must write their contracts to manage any potential values returned.
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Wallet Griefing occurs when a call to an external function inside a loop leads to an exception being

thrown (for any reason), thus causing the whole transaction to fail even if other calls were successful.

For example, given the following code(46):

for (uint i=0; i<investors.length; i++) {

if (investors[i].invested == min_investment) {

// Refund, and check for failure.

// This code looks benign but

// will lock the entire contract

// if attacked by a griefing wallet.

if (!(investors[i].address

.send(investors[i].dividendAmount)))

{

throw;

}

investors[i] = newInvestor;

}

}

A "griefing wallet" could be a malicious contract which throws if its fallback function is called (a func-

tion that is always executed when an external address calls the contract with a blank function signature,

that is, when no function is specified in the message call or transaction). In any Ethereum transaction or

message call the first four bytes of the input data specifies what function will be called. If this is empty

or is a call to an invalid function, the fallback function will still be called.

For example, given the following contract.

contract malicious{

function (){

throw;

}

}
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Whenever investors[i].address.send() is called, where investors[i]. address is

the address of malicious, an exception will be thrown, causing the transaction to always fail when it

makes an external call to that address.

The CALL, CALLCODE and DELEGATECALL OP Codes represents three different methods of creating

message calls. Recall that a message call is a form of contract-to-contract communication consisting

of a number of key-value pairs, namely “they have a source, a target, data payload, Ether, gas and return

data."(19).

Because all three variations of a message call execute code from an external contract (the caller’s con-

tract), we need to assume the worst-case scenario in that the external contract may contain a code exe-

cuted via a message call whose execution path leads to an out-of-gas exception.

Even if a message call does not specify a function signature (i.e specify what function in the external

contract it is calling, a message call with a blank function signature will still execute the fallback function

as previously stated. If a message call does specify a function signature, the external contract’s function

being called could still be modified over time, could call other functions within the contract itself or have

some execution path that still leads to an out-of-gas exception, for example, if storage becomes too

large and hence too expensive to retrieve.

2.6 Mass Clearing of Storage

Inexperienced developers may be tricked into thinking that relatively simple statements that are easy to

write in Solidity and other languages are unlikely to cause major issues. However, this can simply be

an abstraction in higher-level languages, when in fact many complex operations occur in the EVM. An

example of this is the clearing of arrays or mappings in Ethereum.

In order to add data or change an existing value in storage, an SSTORE needs to be applied. Recall that

SSTORE is an expensive operation consuming 20000 gas if adding to storage or 5000 gas if changing an

existing value. Note that this is for each 32-byte word entry, not for the collection of words as a whole

(for example in the form of an array).
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Given an array of addresses of data type address, a user who wishes to clear all data in the array

(i.e change multiple entries) could do the following:

addresses = new address[](0);

In many languages such as Java this is a relatively simple operation, as the Java Virtual Machine (JVM)

will free that memory used without any issue, assuming the array does not contain an enormous number

of elements. However, in smart contracts, the EVM will loop over each entry in addresses and apply

the SSTORE operation in each iteration, setting each value to zero. Note that even if the existing value

is zero, the operation will still cost 5000 gas, as the value is being set to zero again.

Assuming a block gas limit of 6.7 million gas, and given that each transaction costs 21000, the number

of elements that can be cleared in a single transaction is roughly:

entriesCleared = b(6700000− 21000)/5000c = 1335 (2.12)

Hence, assuming no other operations take place in the transaction, only 1335 entries can be cleared

in a single transaction. If addresses holds more than 1335 elements, then addresses = new

address[](0) will never execute!

A more gas efficient and safer method is to not delete elements at all (thus avoiding the use of SSTORE)

but instead keep track of what entries are "in use" and a counter for the number of these entries(23).

Although this method is inefficient for the blockchain (as the blockchain needs to keep maintain storage

for all elements not in use), it is more gas efficient as unused elements can simply be ignored.

Thus, we check for instances where SSTORE operations are performed within a loop, as this is an

inefficient coding pattern that can easily lead to an out-of-gas exception.

2.7 Summary

In this chapter we introduced three vulnerabilities that have significant consequences for smart contracts.

The Wallet Griefing attack allows malicious contracts to cause a loop to always fail simply by throwing

an exception. Having a dynamically bounded array can also cause the loop to never complete by con-

suming too much gas, as the loop bound grows over time as more data is added to the smart contract.
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Moreover, while clearing data structures may seem like a trivial matter in other programming languages,

doing so in smart contracts is expensive as clearing storage leads to a change in persistent storage on

the blockchain, which all other nodes must replicate. Given the seriousness of these vulnerabilities, how

can we automatically detect them?



CHAPTER 3

Analysis

In this chapter we will present an analysis to identify the three aforementioned resource-based vul-

nerabilities of smart-contracts. To identify these vulnerabilities we employ techniques developed in

static-program analysis (32) that is concerned with abstracting the real semantics of a program making

the detection of vulnerabilities decidable. There are various ways to express static program analysis.

In our approach, we provide a mix of techniques. We introduce a frequency analysis that estimates

the maximum frequency count for a statement based on a given gas budget, thus determining whether

statements are cyclic or not if the maximum frequency count is greater than one.

Finally, we provide logical specifications that use the results of the maximum frequency analysis. These

specifications characterize the resource-based vulnerabilities. The specifications are approximations,

i.e., they cannot detect with complete certainly whether a vulnerability may become an exploit. They

just indicate whether there is the potential for an exploit to exist.

Although these techniques were integrated into the Vandal framework as described below, the algorithm

used to calculate maximum frequencies is agnostic to any particular framework, if given a control-flow

graph and a gas budget. However, the logical specifications used to identify vulnerabilities is specific

to the Datalog programming language in the context of the Soufflé engine. Nevertheless, the first-order

logic rules can be adapted for any other logic programming language and framework.

To analyze potential vulnerabilities in smart contracts as a result of exceeding the gas limit, it is neces-

sary to derive an effective way of analyzing the costs of executing a particular sequence of OP CODES

contained within a given execution paths for all possible paths. Currently, there is no efficient way

of doing so. web3js, a JavaScript-based RPC Application Programming Interface (API) has a partic-

ular function called web3.eth.estimateGas(tx), which executes a simulated transaction to the

blockchain and returns the estimated gas consumed as if the transaction was actually sent. However,

21
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it makes several assumptions, including that no exceptions are thrown and all blocks are mined in the

same manner.

The Solidity compiler can estimate gas using the command solc --gas <solidity file>.

However, it makes the same assumptions as web3.eth.estimateGas(tx). Both methods do not

give any insights into the gas spent at specific points in the execution of a contract or for any particular

execution path.

Existing formal verification tools such as "Oyente" and "Gasper" as described in Chapter 7 use sym-

bolic execution to conduct their analysis. Symbolic execution is a static analysis technique where each

possible execution path is checked for a given input x. This is a slow process that is exponential in the

number of computational steps required. Luu et al (2017) were only able to execute on average nineteen

paths in each contract. In many relatively complex contracts, this is far from the total number of paths.

We propose to use two methods to analyze gas costs across execution paths which are more efficient

than symbolic execution. Our initial algorithm uses an integer linear programming solver which takes

as input a sequence of basic blocks and their edges and calculates the maximum frequency of each edge

to determine the path that leads to the greatest gas cost. Although still requiring an exponential number

of steps, there are far fewer paths that need to be analyzed compared to symbolic execution.

The integer programming method will be the benchmark compared to the more optimal, iterative solu-

tion using Dijkstra’s Algorithm that runs in polynomial time. We demonstrate that it is orders of mag-

nitude faster than solving maximum frequencies using integer linear programming for large, non-trivial

contracts.

This analysis helps us determine the logic specifications to identify a number of exploits that have not

been covered in previous papers. These exploits often lead to out-of-gas exceptions or a denial-

of-service problems, and include the identification of dynamically bound loops, which can grow in size

over time making a transaction more expensive to execute, the Wallet Griefing attack, which can deny

access to a contract, and the mass clearing of storage for data structures such as mappings and arrays,

which is a common error made by developers that is an expensive operation to run.
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3.1 General framework

The detection of the exploits mentioned in Chapter 2 extends an existing framework. As described in

Figure 3.1, it consists of a decompiler that transforms low-level bytecode generated by the EVM to

its three-address code (TAC) representations, as well as a series of logical specification in Soufflé that

analyze the results from the decompiler.

In order to perform our analysis on the blockchain, the following steps are performed:

(1) A scraper written in Javascript uses an Ethereum node via the Parity software client to scrape

blocks from the local blockchain that is kept synced with other Ethereum Mainnet blockchains

using JSON-RPC calls. This produces, amongst other data, the contract bytecode of each con-

tract stored in a particular block in the following format: <contract_hash_runtime>.hex.

These files are stored in a directory. Each file contains the contract bytecode stored on the

blockchain.

(2) A disassembler runs the <contract_hash_runtime>.hex file to translate contract byte-

code to a series of OP CODES mnemonics and their impact on the EVM stack and its program

counter.

(3) The decompiler is run on the disassembled output to produce a series of basic blocks and three

address code (TAC) output. This is achieved by simulating the execution of the EVM. The

TAC output is then segregated into a set of basic blocks that are then connected to one another

by creating a list of predecessor and successor for each block, thus form a CFG. While building

the CFG, we analyze the gas consumed per block by iterating over the each OP CODE that is

executed and its associated costs.

(4) After the CFG is created, we perform our maximum frequency analysis by first transforming

each vertex (which represents a basic block) to a weighted edge as described in Algorithm 1,

where the weight is the total gas consumed by that basic block. The maximum frequencies of

each edge are then calculated using the iterative solution as described in Algorithm 2 or using

the Integer Linear Programming (ILP) solution to determine what statements exists within a

loop and the number of times those statements can be vised for a given gas budget b. This

produces a new CFG where each edge has an associated maximum frequency based on b.

(5) A series of .fact files are produced and exported by the decompiler. Facts are statements that

are assumed to be true and form the basis of all predicates constructed in our logical analysis.
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These facts track the flow of data in the program, the statements themselves, the use of storage

and memory, graphic dominance (described below) and the start and end statements of all

cycles found in the program (given b). These files are essential for our logical specifications to

automatically detect vulnerabilities.

(6) Soufflé is run using the .facts files given combined with our datalog programs that identify

patterns in the program mapped to a given set of vulnerabilities. If a pattern is identified,

Soufflé will flag the program as containing at vulnerabilities and which statements have it. If

a given pattern is not identified, then nothing will be flagged. A program either has a given

vulnerability or not. Note that a variety of patterns can be coded in datalog, not just to identify

vulnerabilities but anything in particular, for example, inefficient coding or gas consumption

patterns.

FIGURE 3.1: Security Analysis Pipeline

3.2 Loops

Loop analysis is a difficult task since high-level loops in Solidity need to be analyzed at the EVM level.

The only way to deduce loops is to analyse the underlying CFG of a smart-contract. The Vandal system

provides the functionality of producing control flow-graphs of smart contracts. However, the Vandal

system has to be extended to find loops for resource-based vulnerabilities of smart contracts. This loop

analysis focuses on sub-graphs that form cycles, and is detected by determining the maximum frequency

of each edge.
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FIGURE 3.2: The control flow graph of a simple function with a loop

A loop that has a fixed number of iterations needs to be executed before that transaction finishes and is

submitted to the blockchain. If the amount of gas forwarded for the transaction exhausts before the loop

concludes, then the transaction will revert. These loops are easier to analyze than dynamically bounded

loops because there is a known number of iterations at run-time.

The example below contains a kernel of source code called contract safeLoopwith a function test()

that contains a fixed number of iterations 256:

contract safeLoop{

function test() constant returns (uint) {

uint x = 0;

for (uint i= 0; i<256; i++){

x++;

}

return x;

}

}

This produces the following cyclic subgraph as depicted in Figure 3.2. The basic blocks labelled 0x70,

0x7a and 0x82 contain the for loop functionality mentioned above. Block 0x70, which strictly

dominates all statements within the cycle given in figure 3.2, contains a comparison check against the

loop bound. Note that block 0x70 only has one outgoing edge to block 0x7a as the function will return
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x once the loop has concluded, and does not perform any other operations after that. The TAC output of

figure 0x70 is given below:

Block 0x70

0x75: V29 = LT {0x0, 0x1} 0x100

0x76: V30 = ISZERO 0x1

---

Block 0x7a

0x7c: V32 = 0x1

0x7e: V33 = ADD 0x1 {0x0, 0x1}

---

Block 0x82

0x87: V35 = ADD 0x1 {0x0, 0x1}

0x8d: JUMP 0x70

The crucial statement above is 0x75: V29 = LT 0x0,0x1 0x100 as this applies a less-than

comparison against the hex value 0x100, with the value 256 in base 10 in order to check against the

bound of the loop. Block 0x7a performs the change to the loop’s counter (in this case, by incrementing

i, and Block 0x82 performs operations within the for loop, which increments the variable x

In contrast, a loop with a fixed number of iterations 2563 will exceed the block-gas limit:

contract unsafeLoop{

function test() constant returns (uint) {

uint x = 0;

for (uint i= 0; i<256**3; i++){

x = x*i + x;

}

return x;

}

}

}
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There are also loops whose bounds are determined by variables that can change over time (i.e dynami-

cally bounded loops). For instance, they may depend on user input or some value returned from storage

using SLOAD.

As previously mentioned, loops determined by user input could grow dynamically such that iterating

through the loop exceeds the block gas limit or becomes too economically expensive to run such an

action. This will lead to a “Denial of Service" for all transactions that must attempt to iterate the loop.

Consider the contract below (10):

pragma solidity ^0.4.11;

contract dynamicLooping{

struct Payee {

address addr;

uint256 value;

}

Payee [] payees;

function payOut() returns (uint) {

uint x = 0;

for (uint i= 0; i<payees.length; i++){

x++;

}

return x;

}

}

A user is able to become a Payee, which consists of both an address and a certain ‘uint256 value‘,

which could represent, say, the balance in Wei that is held by that particular address.

If an address (such as the address of the contract owner) were to call the function payOut(), a payment

in Wei will be sent out to each address according to the balance the user holds. However, because the

loop is bounded by payees.length, and the number of payees may always increase, the contract

will reach a point where executing the function:

payees[i].addr.send(payees[i].value);
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FIGURE 3.3: The control flow graph of a simple function with a loop bound determined
by external input.

will exceed the block gas limit, as payees.length can increase in length over time as more and more

addresses are added to payees.

Hence, our security analysis should determine if a particular loop bound can be dynamically increased

over time.

The Contract dynamicLooping produces the following cyclic subgraph in 3.3.

The blocks that contain the for loop are 0x70, 0x7d and 0x85. These three blocks have the following

TAC output:

Block 0x70

0x70: JUMPDEST

0x71: V28 = 0x0

0x74: V29 = S[0x0]

0x78: V30 = LT {0x0, 0x1} V29

0x79: V31 = ISZERO V30

0x7a: V32 = 0x91

0x7c: JUMPI 0x91 V31
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---

Block 0x7d

0x7f: V33 = 0x1

0x81: V34 = ADD 0x1 {0x0, 0x1}

---

Block 0x85

0x85: JUMPDEST

0x88: V35 = 0x1

0x8a: V36 = ADD 0x1 {0x0, 0x1}

0x8e: V37 = 0x70

0x90: JUMP 0x70

The output is, not surprisingly, very similar to the output of safeLoop in that block 0x7d performs

the operations the for loop, in this case by simply incrementing a variable. However, the key difference

is the loop bound, which in dynamicLooping is set in the statement:

0x74: V29 = S[0x0]

which is then compared to i to ensure it is less than the number returned by S[0x0], where S[0x0]

represents the value of the word loaded from storage located at 0x0. A word is a piece of data repre-

sented by 32-byte and is stored in a mapping of key-value pairs of 32-byte words(19) This is exactly the

size of payees.length, where payees is a struct stored using the the SSTORE OP CODE.

Hence, we can conclude that a loop bound whose value is determined by a word retrieved from storage

is essentially a word of dynamic length, and hence represents a loop bound whose value could grow over

time as more data is added and the word length increases.

This analysis can be conducted simply by look at the node at the beginning of the cycle.

In the above example, 0x59 is the node that begins the loop by first checking if the conditions within

the loop bound are being met. In the case that the check evaluates to false, then the loop will break,

and the execution path will continue outside of the cycle. If the check evaluates to true, it will continue

along the cycle path and repeat back to 0x59.
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3.3 Wallet Griefing

Recall that a contract is said to be vulnerable to the “Wallet Griefing" exploit if a message call (defined

by the use of a CALL, CALLCODE or DELEGATECALL exists within a loop, as the external contract

being called may perform some operations that throws an exception, thus prevent the loop from ever

completing.

An example of Wallet Griefing in depth is below(46):

contract walletGriefing {

mapping (address => uint256) balances;

function grief () {

for (uint i=0; i<balances.length; i++) {

// Refund, and check for failure.

// This code looks benign but will lock the entire contract

// if attacked by a griefing wallet.

if (!(investors[i].address.send(balance[i])))

{

throw;

}

investors[i] = newInvestor;

}

}

}

This produces a CFG with the following cyclic subgraph as depicted in Figure 3.4.

The key block to analyze in the cycle is block 0xe4. This block contains the operations where the

message call is performed and the return value checked:

0xf1: V70 = M[0x40]

...

0xf6: V73 = M[0x40]

0xf9: V74 = SUB V70 V73

0xfe: V75 = CALL V68 V48 V66 V73 V74 V73 0x0
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FIGURE 3.4: The control flow graph of a simple function with a message call inside the loop

Where V75 contains the return value of the call. Note that using the send() or transfer() func-

tions in Solidity will cause 2300 gas to be forwarded to the address being called. If call.value()()

were used instead, then the gas forwarded would be the remaining gas left in the transaction returned by

the GAS operation.

If the address being called causes an exception to be thrown then V75 will never contain the return value

of the call (since a return was not made) and the EVM will jump to an invalid destination. Because one

does not know the value of V75 in advance, or that it will return anything at all, V75 = CALL V68

V48 V66 V73 V74 V73 0x0 is a vulnerable statement that could cause the loop to never finish

executing.

Hence, if a CALL, CALLCODE, or DELEGATECALL is made within a loop (i.e within a subgraph that is

cyclic), then we can conclude that the contract is vulnerable to Wallet Griefing.
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3.4 Mass Clearing of Storage

Recall that clearing storage is an expensive operation that should be minimized whenever possible.There

are several ways a developer might attempt to clear storage in Solidity. One method is to write a loop

bounded by the size of the array, and reassign each value to some zero value:

contract clearStorage {

address[] public addresses;

function testClearStorage() {

//Iterate over each element and clear storage

for (uint i = 0; i<address.length; i++){

//set to zero value

address[i] = 0;

}

}

However, an even more simple way of clearing storage is shown below:

contract clearStorage {

address[] public addresses;

function testClearStorage() {

addresses = new address[](0);

}

}

When initiated, the contract contains an array of type address. Calling the function testClearStorage()

causes the smart contract to attempt to clear all the address elements in addresses and set them to

some non-zero value. Note that because the EVM is single-threaded, each element must be set to zero

itself on an iterative basis.

Although clearStorage appears to be relatively simple, it produces a CFG consisting of 34 basic

blocks,and produces the cyclic subgraph C:
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FIGURE 3.5: C allowing a user to clear an array of addresses

In Block 0x164, the element returned (which is always a 32-byte word) first checked to see if it has

already been assigned a zero-value. If a zero-value has already been assigned, then the reassignment is

skipped, thus representing an optimization made by the EVM. If the value is non-zero, then an SSTORE

operation is performed, setting it to zero. This is described in the TAC below:

V97 = S[S1]

...

V104 = MUL V103 0x1

V105 = OR V104 V101

S[S1] = V105

Note that a comparison check is made in Block 0x15b against the length of the the collection of ele-

ments in that particular data structure, whether it is a mapping or an array. This check is show below:

V90 = GT V89 S2

V91 = ISZERO V90

V92 = 0x1b3

JUMPI 0x1b3 V91
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S2 is a variable containing the length of the data structure. Note also that the SLOAD operation to attain

the length value is performed only once. The value used by JUMP determines where in the control flow

graph the execution will go to. If the check returns false, it will exit the loop to block 0x1b3, else it

will once again jump to block 0x164.

3.5 Maximum Frequency Analysis

In order to detect the exploits mentioned in chapter 2, the decompiler needs to be able to detect the

presence of loops in a given CFG. Chen et al (2017) ignore all loops and hence does not even parse them

when given a smart contract. To determine if loops exist in a contract, and if a particular sequence of

statements falls within a loop, we need to calculate the maximum frequency of each edge - the number

of times that edge is visited given an execution path and a set gas budget. If the maximum frequency is

greater than one, then we know that statement with that incoming edge is inside a loop.

A CFG consist of nodes that represent a given amount of computation and edges that connect these

nodes together to creates paths that could be traversed when executing the program.

Recall that the total gas cost cannot exceed the block gas limit, which can be determined by looking at

the gas cost of the previous block and taking that as the block gas limit. This limit cannot be exceeded

by any path and a user cannot set a gas budget greater than it. Note that the block gas limit may vary

slightly than the previous block as described in Chapter 2.

Hence, we have the following:

(1) Let t, b and u be the gas cost, the total gas budget and block gas limit respectively (b ≤ u).

(2) Code in the costs of each OP CODE according to the formulae specified in Appendix G. Fee

Schedule, page 20. In the Vandal framework, this was coded in as a parameter for each OP

CODE in Op_Codes.py, where each OP Code is a tuple consisting of its symbol (for exam-

ple, ADD), the impact on the stack of performing the operation, and its associated gas cost.

(3) When running the decompiler, determine the gas consumed per block based on the results in 2.

Take note of the successors of each block (which represent an edge to that block in an execution

path).

This produces a control flow graph G(V,E) where V is the set of basic blocks (vertices) and E is the

set of edges (successors).
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A CFG consists of nodes that represent a given amount of computation and edges that connect these

nodes together to creates paths that could be traversed when executing the program.

We can now calculate the maximum frequency of each edge for a given control flow graph. The algo-

rithm below is shown to run in polynomial time. The maximum frequency of a given edge e(v1, v2, g),

where g is the total number of gas consumed by traversing this edge (i.e the weight of the edge), v1 is

the outgoing vertex of e and v2 is the incoming vertex of e, is defined to be the number of times a visitor

in a given path p can visit the node with a given gas budget b. The purpose of calculating maximum

frequencies is to determine the maximum number of iterations for each edge for a given transaction and

its gas budget b.

3.6 Transforming the CFG

In order to perform the maximum frequency analysis, we first need to create a new CFG where all basic

block gas costs (denoted as “weights") become edges between the basic blocks to create a connected

graph C, where there exists a common start and end node s and e respectively that is connected to all

“real" start and end nodes respectively. This connected graph is denoted by C(V,E, s, e), where s and e

are the start nodes respectively, and V and E and the set of vertices and edges respectively. Both s and e

have outgoing and incoming edges with a weight of zero (since these do not represent actual computation

that takes place in the EVM) respectively. Each basic block with no predecessors or successors will be

connected to s and e respectively.

To produce C, the following steps are taken:

(1) For each basic block, create an edge e(v1, v2, g), where v1 is the outgoing vertex, v2 is the

incoming vertex, and g is the gas consumed traversing that edge (i.e the edge weight).

(2) Create a start node s.

(3) Create an end node e.

(4) If v1 does not have a predecessor vertex v, create a new edge of zero weight from s to v1 (i.e

e(s, v1, 0)).

(5) If v2 does not have a successor vertex v, create a new edge of zero weight from v2 to e (i.e

e(v2, e, 0))
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Note that all of the gas consumed of a basic block goes to the incoming edge of v.

Algorithm 1: Constructing the new CFG
Data: cfg.blocks

Result: A new cfg ncfg

for all blocks n in cfg.blocks do

if no predecessors then
add incoming edge from s

else

for all predecessors p in n do
add incoming edge from p with weight equaling the gas consumed of n.

end

end

if no successors then
add outgoing edge to e with weight 0

else
end

3.7 Iterative Solution

Calculating shortest paths to determine what is the maximum number of times the edge can be visited

which represents the upper bound of iterations, as there are no better execution paths that would comprise

of a cheaper gas cost. This is opposed to calculating the longest path, which would determine the

minimum frequency of a node and represent the lower bound of the number of edges or statements in

a transaction. Such a problem is NP-Hard given a directed cyclic graph which can exist in the CFGs

of Ethereum smart contracts due to its Turing-completeness. Furthermore, calculating longest path may

assume that vertex is not reachable when indeed it is based on a shorter execution path that the EVM can

traverse. Although cycles can be detected using a variety of algorithms such as Depth-First Search by

detecting back-edges (an out-going edge for vertex u which visits a vertex v that has a path consisting

of an incoming edge to u), these algorithms do not work for a given resource constraint (i.e a gas

budget). Moreover, these algorithms can only detect cycles and not the number of iterations of each

cycle for a given budget. Hence, the maximum frequency algorithm described here is significant given

the behaviour of gas, how miners behave, and the EVM.
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Note that we assume no negative cycles exist, which is a safe assumption as negative gas costs do not

exist in the EVM. If negative gas costs did exist, that would imply that the network would be paying you

to run your analysis!

Given the Directed Connected Graph C and the following paths in C, where s and e are the start and

end nodes of C respectively:

p(s, p), p(p, q), p(q, e)

To find the maximum frequency of e(p, q), for each p and q, run Dijkstra’s algorithm on p(s, p) and

p(q, e) to calculate the total gas consumed in the shortest paths sp(s, p) and sp(q, e), as described in

Algorithm 2.

Now, consider the following three cases:

(1) If no path p(s, p, q, e) exists, then:

Pmax = 0

(2) A path p(s, p, q, e) exists, and there is no cycle (i.e a shortest path sp(q, p)), then

Pmax =

1, if sp(s, p) + e(p, q) + sp(q, e) ≤ b

0, otherwise

(3) If p(s, p, q, e) and sp(q, p) exists, a cycle exists for p, then:

mf = b[sp(s, p)− e(p, q)− sp(q, e)]/(e(p, q) + sp(q, p))c

Pmax =

1+mf, if sp(s, p) + e(p, q) + sp(q, e) ≤ b

0, otherwise

If p(s, p, q, e) does not exist, then p and q will never be visited in a given transaction, as a transaction

must always start at s and end at e. Hence, the maximum frequency must be zero. In the second case,

e(p, q) can only be visited at most once in a given transaction, as no cycle exists. Thus, if e(p, q) can

be visited from s to e with a cost less than or equal to b, then it will be visited once, and the maxi-

mum frequency set to one. Otherwise, e(p, q) will never be visited for that b and hence the maximum

frequency will be set to zero. In the third case, the maximum frequency, if it passes the condition
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as mentioned in case two (i.e that sp(s, p) + e(p, q) + sp(q, e) ≤ b), the maximum frequency will

be at least one. However, the maximum frequency will also need to include the number of cycles,

where each cycle adds one to the maximum frequency count. This can be easily determined by taking

sp(s, p) − e(p, q) − sp(q, e), the cost of p(s, p, q, e) given one iteration, and dividing it by the cost of

running a cycle (that is, e(p, q) + sp(q, p)).

Performing the maximum frequency calculations according to the formulae above is described in Al-

gorithm 2. Note that Dijkstra’s means “Dijkstra’s shortest path algorithm" (49), which utilizes priority

queues to improve performance:

Algorithm 2: Calculate Maximum Frequencies

for e in C do
sp_s_p← dijstrakas(s, p)

sp_q_e← dijstrakas(q, e)

ifCycle← dijstrakas(e(V (1)), e(V (0)))

if no path from s to p, p to q, q to e then
mf← 0

else if [sp_s_p + w(p,q) + spqe] ≤ b then

if isCycle then

mf(e)← b[b− sp(s, p)− e(p, q)− sp(q, e)]/(e(p, q) + sp(q, p))celse

else
mf← 1

end

end

else
mf← 0

end

The resulting algorithm can be shown to have polynomial complexity.

CLAIM: Algorithm2 runs in O(E((n+ e) log n)).

PROOF: The number of times the maximum frequencies needs to be calculated corresponds to E. For

e ∈ E, Let p, q be the vertices in e(p, q), and s and e be the start and end nodes for the connected graph

C respectively. Dijkstra’s algorithm needs to run three times, one to determine, the shortest path from
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s to p, another from q to e and one to check if a shortest path cycle exists between p and q. Dijkstra’s

algorithm utilizing priority queues runs in O((n + e) log n) time, where n is the number of vertices in

C. Since there are E number of iterations required, the complexity is O(E((n + e) log n)), which is

polynomial.

3.8 Integer Linear Solution

The maximum frequency problem can also be described as an integer linear optimization problem. The

objective is to maximize the edge frequency for each edge (p, q) defined as f(p, q) for all edges e in

G = (V,E). This problem is subject to five constraints. The sum of the edge frequencies between the

start node s to the node u must equal one, where u is in the set of successor nodes of of s (i.e there must

exist a path p from the start node s to the end node e. The sum of the edge frequencies between the

node v and the end node e must equal one, where v is in the set of predecessor nodes of e. The sum of

the frequencies going from u to the v must equal the sum of the frequencies going out of v to w for all

nodes v in V not including s and e. The sum of the gas consumed for a given edge (u, v) multiplied by

the edge frequency (u, v) must be less than or equal to the gas budget b, where (u, v) is an edge in the

set of edges E. Finally, b must be less than or equal to the block gas limit L and b must be equal to or

greater than 21000 (the minimum cost of a transaction)(43):

maximise fpq (3.1)

subject to
∑

u∈δ+(s) fsu = 1 (3.2)∑
u∈δ+(v) fuv =

∑
w∈δ−(v) fvw ∀v ∈ V \ {s, e} (3.3)∑

u∈δ−(e) fue = 1 (3.4)∑
(u,v)∈E g(u, v)fuv ≤ b (3.5)

21000 ≤ b ≤ L (3.6)

and fuv ∈ Z+
0 ∀(u, v) ∈ E (3.7)

All Integer Linear Program are NP-Hard unless P=NP. As a result, we expected this solution to run far

lower than the Polynomial solution described in Chapter 4, especially since the maximum frequency

calculations need to be performed for all e ∈E.
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3.9 Logic of Resource Exploits

The logic specifications to detect the vulnerabilities explored in Chapter 2 were written in Datalog, a

logic programming language using the Soufflé framework(42). Running the Vandal decompiler produces

a series of .fact files which are a collection of statements assumed to be true(42). These files include

the list of statements, edges between statements, what variables are used by what statements, cyclic

statements, and the start and end statements of the CFG. Common rules across all vulnerability detection

scripts were put in place to track the dataflow, paths between statements, controlling statements and

graph dominance. A vertex v is set to dominate another vertex u iff all paths P (s..u) must go v. Graph

dominance, important for determining which statements control others, for every vertex for all paths in

the CFG is calculated after the CFG is created in Vandal using the networkx(31) library, which utilizes

an algorithm developed by Cooper, Harvey and Kennedy (1990) that runs in O(n2) (11). These rules

and facts are essential for establishing the predicates below.

Given a particular control-flow graph G(V,E), a cycle is considered to have a variable loop bound

depended on user input for a given basic block b if the following conditions are met:

(1) A cycle exist is the set V (u..v), where V (u..v) are vertices within the cycle.

(2) b is at the beginning of a cycle.

(3) b is a controlling statement with a fork (i.e two successor nodes or outgoing edges), where on

one successor is cyclic, the other successor is acyclic.

(4) There is one incoming edge from one V (u...v).

(5) a LT ("Less than") or GT("Greater than") check is made against a variable whose value is

retrieve from storage using SLOAD or MLOAD. SLOAD loads a word from storage, while

MLOAD loads a word from memory. Note that is is unlikely, but still possible, that user

behaviour may lead to a significant expansion in memory when executing a smart contract.

However, it is likely to lead to an out-of-gas exception before memory becomes big enough to

cause an out-of-gas exception within the loop itself.

Employing these rules produces the following predicate as shown in Figure 3.6. This predicate states

that a statement within a cycle (denoted by freq(x) that represents all beginning and end statements

for a cycle) dominates the return value of an SLOAD operation that uses an LT or GT check against

some variable. If the predicate holds, we can state that a dynamic bound exists for a cycle in that

smart contract. Note that the analysis may include instances where data is loaded from storage (SLOAD)
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1 dynamicBound(x) :- freq(x),
2 sloadMloadResult(resVar, sloadMloadStmt), imdom(x,sloadMloadStmt),
3 depends(cond, resVar),
4 use( cond, LTGT),
5 isLTorGT(LTGT).
6 )))))))

FIGURE 3.6: Datalog Program: Specification for dynamic bound.

or from memory (MLOAD) and a comparison check is made against this, although this is also a gas

inefficient coding pattern as stated by Chen et al(2016) (6).

The "Wallet Griefing" and "Mass Storage Reassignment" exploits can be detected by performing sim-

ple taint analysis, the process of marking data as being "tainted" should it originate from an untrusted

source(7). In this case, message calls to an external contract should be marked as tainted because the

execution path of the contract is unknown in advance.

Given a particular control-flow graph G(V,E), the following execution paths exist such that:

(1) The statement is a controlling statement.

(2) A cycle exist is the set V (u..v), where V (u..v) are vertices within the cycle.

(3) A fork exists, where there exists two successors. One successor is cyclic, the other successor

is acyclic.

(4) A CALL, CALLCODE, DELEGATECALL exists within u..v.

Any execution after one of those three OP Codes is assumed to be strictly tainted, because if the com-

putation in the external contracts leads to an exception, the entire transaction will be rolled back, and no

state changes will have been made.

Employing the above rules creates the following predicate:

1 checkedWalletGriefing(x) :- freq(x), path(callStmt, x), path(x, callStmt), callStmt(callStmt).

2 )))))

Which states that a CALL, CALLCODE or DELEGATECALL statement is cyclic as a path exists from x

to a message call statement, and a path exists between the message call and x. This property is enough

to detect Wallet Griefing, as the mere presence of a message call, regardless of the payload data or
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execution, makes the smart contract vulnerable as the external contract being called may throw and

exception, causing the loop to never complete.

A very similar predicate is also established when checking if SSTORE exists within a cycle:

1 checkedMassSSTORE(x) :- freq(x), path(sstoreStmt, x), path(x, sstoreStmt), sstoreStmt(sstoreStmt).

2 )))))

An SSTORE statement that exists within a loop will be executed is an inefficient coding pattern, as

discussed in chapter 2 and argued by Chen et al (2017). The SSTORE statement will be executed a

given number of times as determined by the maximum frequency of the given edge where the operation

is performed. The type of data being saved is largely irrelevant as the lowest gas cost is 5000 (when

setting a non-zero value to a zero value in storage), and as previously discussed in chapter 2, there are

more gas efficient coding patterns that should be used.



CHAPTER 4

Experiments

In conducting our experiments we had following questions:

(Q1) How many vulnerabilities can be found on the Ethereum Mainnet blockchain for each of the

three vulnerabilities analyzed?

(Q2) How long does the analysis take (for Souffle and calculating maximum frequencies)?

(Q3) What percentage of edges have a maximum frequency greater than one? (i.e are statements

within a loop).

(Q4) What is the performance comparison of the iterative solution versus the integer linear program?

Three experiments were conducted based on the maximum frequency algorithms and datalog specifica-

tions covered in chapter 3. To test the maximum frequency calculations of both the iterative solution and

integer linear programming, the algorithms were written into the existing decompiler software written in

Python. The final experiment was running our datalog specifications on the three classes of vulnerabili-

ties discussed in chapter 3 on all successfully decompiled contracts. These experiments were conducted

on all contracts scraped from the Ethereum Mainnet blockchain as of 28 July 2017, totaling 886,323.

These contracts were scraped using an scraper built in NodeJS in order to run the analysis for the initial

Vandal framework previously mentioned (1). The scraper performs JSON-RPC calls to the blockchain

using a Parity node and stored in PostgreSQL. The 28 July 2017 scrape was considered appropriate due

to the large number of smart contracts for which we could test on. Performing our analysis on a more

recent scrape would have required significantly more time and/or computing power, as the number of

smart contracts is over two million as of October 2017 (16). Moreover, 886,323 contracts is arguably a

large enough sample size to draw important inferences from in our results.

All results were generated using an Ubuntu 16.04.02 LTS, x86_64 64-bit machine with 24 CPUs, with

2 threads per core. Each CPU is an Intel(R) Xeon(R) x5650 model with 2.67GHz processor. No over-

clocking was used.

43



4 EXPERIMENTS 44

To perform the analysis, an existing scripted called analyse.py was modified and used that allowed

us to run the iterative maximum frequency calculations first, and use those results to perform our Soufflé

analysis on each contract in parallel(24) as described under Appendix B.

A 120 second timeout was applied to both the decompilation procedure and the Soufflé analysis in order

to avoid any potential obstructions caused by an extremely complicated contract with a large CFG, or

a contract that was unable to be decompiled for a variety of reasons, most likely due to the limitations

of the Vandal system. Because we had access to a machine with twenty-four CPUs consisting of two

threads each, fourty-eight jobs were run in parallel. When one contract was analyzed, the job would

move to the next available contract that had not been previously analyzed. The analysis was run in the

background using screen and detached.

In order to compare the performance of the iterative solution against the integer linear program, a random

sample of 25000 contracts was taken out of 886,323. Firstly, the directory containing all contracts was

shuffled using the following command:

ls runtime-2017-07-28 | sort -R

The first 25000 files were then selected and put into another directory, which was analyzed using

python3 analyse.py that produced a .dat file for each edge. Each edge belonging to a particular

contract was moved into a separate folder, where a bash file iterated over each directory as described

below.

The integer linear programming analysis was conducted using GLPSOL with a model file that contain

the integer linear programming solution as described in chapter 3. This model performs the maximum

frequency calculations on each edge. When Python3 analyse.py was run, each edge for each

contract was written into a separate .dat file, and was then analyzed with the following command:

glpsol --model src/ilp.mod --data <edge.dat>

The script was run on each sub-directory concurrently in the background.

The result of each edge was saved into a JSON file in the following format:

{from: x, to: y, max_frequency: int, time: z}

Where:
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(1) from: The inbound vertex

(2) to: The outbound vertex

(3) max_frequency: The maximum frequency count.

(4) time: The time accurate to 10−20 seconds.

Each contract consisted of a collection of key-value pairs per edge. The results were stored in three

JSON files: one for the iterative maximum frequency calculations, one for the ILP results, and another

consisting of the Soufflé analysis. The Soufflé results contained a list of all vulnerabilities each contract

was deemed to have (or none at all), in addition to the total runtime of Soufflé for each contract.



CHAPTER 5

Results

The results were generated using a number of Python scripts with libraries including matplotlib to

produce the numbers below. Firstly, the results of the Soufflé analysis were loaded into Python’s memory

using JSON.load(data), producing a list of dictionaries, where each dictionary contains key-value

pairs representing the data for that particular contract, such as the decompilation and Soufflé analysis

times, and a list containing the names of each exploit detected in the smart contract. The maximum

frequency data was also loaded into Python. This data was then analyzed using a variety of custom

functions such as calculating the average times below. The gas budget specified for all our analysis was

6.7 million, which is roughly the block gas limit of the network. Table 5.1 describes some basic results.

FIGURE 5.1: The number of times a vulnerability has been detected in a smart contract

46
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Analysis Number
Average Soufflé Runtime Per Contract 0.28 seconds

Average Decompilation Time Per Contract (incl. max frequencies) 1.08 seconds
Total Soufflé Runtime 250,747 seconds

Total Decompilation Time (incl. max frequencies) 957,444 seconds
Total Number of Contracts Analyzed 519,192

Total Number of Contracts 886,323

TABLE 5.1: Summary of Soufflé and Decompilation Analysis

FIGURE 5.2: The number of contracts with a given number of vulnerabilities

Figures 5.1 and 5.2 describe the relationship between the number of contracts and the number of vulner-

abilities. Figure 5.1 described the frequency of each vulnerability across each exploit. Each key (A, B

and C) corresponds to the following:

(1) A: Wallet Griefing

(2) B: Mass Clearing of Storage

(3) C: Dynamically Bounded Loops

Out of 886,323 contracts, the three vulnerabilities had been detected 394 (0.044%), 3437 (0.388%) and

2935 (0.33%) times respectively. Figure 5.2 describes the number of contracts that have a given number

of vulnerabilities, where 746 (0.084%), 2611 (0.295%) and 266 (0.03%) had one, two and three exploits
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present respectively. These results are not surprising, given that most contracts in Solidity do not utilize

loops. Moreover, the vulnerability detected the most was that of dynamically bounded loops. This is

also not surprising, as the presence of the Wallet Griefing vulnerability usually occurs in conjunction

of a dynamically bounded loop (for instance, looping over a number of addresses that you wish to send

Wei to). In addition, all "Mass Clearing of Storage" vulnerabilities are subsets of dynamically bounded

loops, as the vulnerability arises out of using SSTORE is the context of a loop bounded by size of the

mapping or array being cleared, as described in chapter 3.
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FIGURE 5.3: Cumulative Soufflé analysis time across all analyzable smart contracts

Figure 5.3 describes the cumulative time taken to analyze the total number of contracts that could be

analyzed. Note that 519,192 out of 886,323 (58.5%) of all the smart contracts scraped could be suc-

cessfully analyzed using Soufflé. The other contracts could not be analyzed due to variety of reasons,

including that they took too long to decompile and run Soufflé (greater than 120 seconds) or that there

are OP CODES or sequence of OP CODES that the decompiler could not understand.

The maximum frequency analysis is divided into two parts. The first contains a list of summarized

results as shown in the table below. The second is a comparison between the performance of the integer

linear program against the polynomial algorithm.
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Analysis Number
Average maximum frequencies per contract 212

Total run time (seconds 97847.16
Average run time per contract (seconds) 0.18846

Percentage of cyclic edges 1.96%
Total contracts analyzed 519,192

Total Number of Contracts 886,323

TABLE 5.2: Summary of Maximum Frequency Analysis

In the table above, the average maximum frequency number per contracts is 212. The run time is ex-

pressed in terms of the iterative algorithm specifically and does not include any other computation out-

side of that algorithm. The percentage of edges that are cyclic (defined as having a maximum frequency

greater than one) is only 1.96%, indicating that cyclic statements are relatively rare in smart contracts,

which is not surprising given that loops are generally expensive to run. Note that the number of contracts

analyzed with the algorithm is 519,192, exactly the same number that could be analyzed using Soufflé.

This is not surprising, given that the creation of the CFG is a necessary conditions to conduct both the

maximum frequency and Soufflé analysis.

We also analyze the performance of our iterative solution against our integer linear program. An exper-

iment was conducted on a random sample of 25000 smart contracts from blockchain in order to gauge

performance across a wide range of contracts as shown in figure 5.4 and the table below. ILP appears to

have performed better, with an average analysis run time per contract of 0.32 seconds against 0.37 for

the Iterative solution. This appears counter-intuitive, given that the iterative solution was proven to run

in polynomial time as described in Chapter 3, while ILP programs are NP-hard. However, this may be

due to a variety of reasons, including the fact that the ILP program might not have run on edges that take

too long to analyze, as 11869 contracts were analyzed compared to 13362 for the ILP solution.

Nevertheless, when analyzing several relatively sophisticated contracts, the iterative solution dramat-

ically outperforms ILP. We ran our analysis on four contracts: owned, ownable, tokenholder

(all from the Stox ICO token sale contract) (44), and Token (9). In total, the average run time was

4.034 and 0.3838 seconds for the ILP and the iterative algorithm respectively, thus showing the expected

comparative performance of both. The average number of edges was 61.
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FIGURE 5.4: Performance of ILP vs. iterative solution across a random sample of
25000 contracts.The blue line (bottom) is the performance of the ILP, the green line
(top) is the performance of the iterative solution.

FIGURE 5.5: (Left to right - owned, ownable, tokenholder and Token contracts) ILP

vs.Iterative solutions, with time (in seconds) of the y-axis and the number of edges on

the x-axis, sorted by time per edge. The blue line (top) is the performance of the ILP,

the green line (bottom) is the performance for the iterative solution.



CHAPTER 6

Future Work and Discussion

The work covered in this thesis and in the Vandal Framework can be extended in many ways. Firstly, we

can extend our gas analysis and logic specifications to detect gas inefficient coding patterns and hence

assist developers in rewriting their smart contracts to be gas efficient. Chen et al (2017) developed a gas

optimization tool called GASPER. It claims to detect seve gas inefficient patterns. These are

(1) Unreachable code.

(2) Opaque predicates.

(3) Expensive loop operations including the use of SSTORE.

(4) Unnecessary looping, where the result does not change.

(5) Taking operations outside of a loop.

(6) Using an unnecessary number of loops when they could be combined together.

(7) Repeated operations within a loop.

These are all standard programming optimization patterns with significant consequences, as they con-

sume unnecessary gas. Our framework could be extended to detect these patterns, among many others.

In addition, the framework can be extended to detect new vulnerabilities that are being found over time.

For instance, the "Ethereum ERC20 short address address attack" allows a malicious user to inject an

address that is shorter than 20-bytes long into the data payload sent to a function. For instance, a

user should send a data payload consisting of an address and an unsigned integer. A shorter-than 20-

byte address would cause the bytes of the unsigned integer (uint) to be bit-shifted left, as the EVM

adds zeros to the end of the uint to create a valid unsigned integer, meaning a malicious user could

potentially transfer orders of magnitude more tokens than the smart contract developer intended (47).

Another feature of the EVM that could be analyzed in more depth is DELEGATECALL behaviour.

DELEGATECALL is a message call that allows instructions to be executed in the context of the calling
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contract, rather than the Callee unlike CALL (19). This significantly increases smart contract functional-

ity. For example, developers can created "upgrade-able" smart contracts by forwarding calls to a contract

to another, presumably upgraded contract, while still executing instructions in the context of the original

contract (10). However, the behaviour of DELEGATECALL can become complex, especially if multiple

delegatecalls are made between a chain of smart contracts. This can easily lead to vulnerabilities. For

example, a multi-signature smart contract (a smart contract holding Ether and tokens requiring multiple

signatures to sign transactions) developed by Parity Technologies and deployed by many organizations

was hacked, causing the loss over over 30 million USD worth of Ether. The hack was caused by a

DELEGATECALL message call whose data was not checked, allowing "all public functions from the

library to be callable by anyone" (33). Thus, there is an incentive for the framework to be extended to

incorporated the nuance behaviour of DELEGATECALL.

Furthermore, automatically detecting underflows and overflows would be incredible useful. Underflows

and overflows occur when a variable (such as uint) has an operation performed on it that causes the

value to go below zero and hence be set to 2256 (the maximum value) or go above 2256 and hence become

zero (10). This can cause unexpected behaviour. For instance, a malicious user could ask to transfer zero

tokens from a function, knowing that the function will perform a deduction on the value without first

checking to ensure the result is greater than zero, hence allowing him to transfer out all of the tokens

from a smart contract.

Finally, while working on this thesis, Ethereum was upgraded to Byzantium, a major update that repre-

sents the first part in the introduction of "Metropolis", the next stage in Ethereum’s evolution. Byzantium

included nine Ethereum Improvement Proposals (EIPs) which include four new OP CODES: REVERT,

RETURNDATASIZE, RETURNDATACOPY and STATICCALL (17). The require() assertion avail-

able in Solidity is compiled down to REVERT, which reverts all changes to state, but unlike an exception

returns the remaining call to the caller (5). Both RETURNDATSIZE and RETURNDATACOPY allows

the data to be returned by the EVM (40), while STATICCALL is a message call but prevents the callee

from modifications to state (5). Incorporating these new op codes are essential in keeping the Vandal

framework up-to-date with Byzantium.



CHAPTER 7

Related Work

Since many bugs appear in smart contract as a result of programming error, several attempts have been

made to create other high level programming languages and compilers with a focus on security. Viper

is a language with a compiler written in Python3, and claims to have built-in several numeric and type-

safely checks that are lacking in the Solidity compiler, such as checking for underflows and overflows,

providing a “precise upper bound on the gas consumption of any function call" as well as additional

features such as allowing signed integers and fixed point numbers(48). LLL (Low-level Lisp-like Lan-

guage) is, as the name suggests, a lower level language compared to Viper or Solidity, allowing the

developer “direct access to memory and storage" and all EVM Op Codes to optimize and check for

vulnerabilities more clearly than analyzing the execution of the EVM itself(12).

Several initiatives and competitions have been conducted in order to discover additional bugs in smart

contracts, particularly subtle ones, and to raise awareness in the community of the importance of smart

contract security. The underhanded Solidity Coding Contest, taking inspiration from the Underhanded

C Coding Contest, is an ongoing contest with multiple rounds. The first round encouraged Solidity

programmers to deliberately write small, crowdfunding smart contracts that appear safe, but contain

subtle bugs (22). This contest found many serious subtle bugs, such as being able to send Wei to a

smart contract without triggering its fallback function (thus potentially leading to unexpected behaviour

as the smart contract might not have anticipated it), and the ability to create dynamic arrays of enormous

length, leading to underflow and overflow behaviours (the maximum size of an array is 2256)] and is

being incorporated into future versions of the Solidity compiler (39).

As of V0.4.16, the Solidity Compiler has an in-built SMT Solver with Z3. This allows the devel-

oper to test against a variety of checks at compile time that is in-built into the solver, such as un-

derflows and overflows, by importing the checker by activating experimental tools using Pragma
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experimental SMTChecker.(41) The solver also executes assertions and checks the return

value of the assertion. For example:

assert((a + b) <= 128)

will check to ensure that an exception is thrown if a+b is less than or equal to 128, which should evaluate

to false.

There are a number of tools that perform dynamic analysis on behaviour of smart contracts, testing

inputs against expected outputs. For instance, “SolCover" is a tool that executes a given set of lines or

statements within a particular smart contracts a specified number of times. This form of “code coverage"

uses instrumentation by first running “SolParse", which generates a .json file as output containing a

hierarchical overview of the contracts and its associated objects,functions and statements and then an-

notates each statement. These annotations triggers events which are stored in memory for the duration

of the analysis (37). SolCover checks for a number of common issues in smart contracts such as check-

ing the return value of assert and require statements, dead code, and if if statements and loops

have been written correctly, such as requiring certain vulnerable statements to be inside an if statement

(i.e a guard statement). However, the tests do not cover a number of factors, such as if a given state-

ment or execution path will lead to an out-of-gas exception, as the annotations trigger events (i.e

perform additional LOG operations) that adds to gas cost. Moreover, SolCover only does analysis on

Solidity, not on the underlying operations of the EVM. For instance, in earlier versions of SolCover,

although assert(condition) and require(condition) perform exactly the same operations

at the EVM as an if(!(condition)) throw statement, they were being treated different, with

assert(condition) and require(condition) being treated as branching statements (although this

was fixed in later versions of the software).

Several formal verification tools are being developed to identify the exploits described in section one.

These tools have been constructed in a variety of different ways which helps illustrate the multiple

approaches being used to automatically detect vulnerabilities in improperly written contracts.

Luu et al (2016) developed a tool called “Oyente", a project written in Python which aims to identify a

number of vulnerabilities in smart contracts using symbolic execution (29). Their analysis is performed

at the EVM level, and is also capable of determining the gas consumption of execution paths.
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Oyente identifies four exploits: Transaction-Ordering Dependence, Timestamp Dependence, exceeding

the call stack limit of 1024 (Callstack attack) and reentrancy.

However, there are many limitations of their system. Oyente, using symbolic execution, can only ana-

lyze an average of nineteen paths per contract, despite taking 350 seconds to run per contract using a

significant amount of computer power. In their experiments, Luu et al (2016) used 4 Amazon Ec2 10x

large instances, 40 CPUS and 160GB of Ram. Hence, many false negatives may exist in a smart contract

simply because the execution path with a particular vulnerability was not parsed.

Bhargavan et al (2016) provide another formal verification tool for Ethereum Smart contracts. They

detect three classes of vulnerabilities. These include checking the return value of external address calls

and reentrancy. These patterns were verified in F* by translating the contracts into F* code, from which

patterns were written in another F* program and used to detect vulnerabilities. They also converted both

bytecode and Solidity into F*, allowing them to perform different analyses on the same contract. By

analyzing F* from Solidity, they were able to identify the existence of a reentrant vulnerability. Their

software can also compute gas consumption. While translating bytecode into F*, they keep track of each

element popped of the stack and add each OP CODES gas costs to a gas counter. This final gas counter

is the upper bound for a particular execution path.

Hildenbrandt et al (2017) incorporated the entire semantics of the EVM (as of EIP-150) in their frame-

work known as ’K’. Their objective is to created a low-level formal verification tool to identify bugs

can could lead to the loss of significant funds. The framework was applied to the "ERC-20" token

standard smart contract, which is an interface many developers use when launching token to ensure

they are compliant with many exchanges. A complete set of instructions was generated from the

TransferFrom(address _from, address _to, uint256 _value) and transfer

(address _to, uint256 _value) functions and could check for several properties to ensure

that in all cases the functions would not be vulnerable to arithmetic and stack overflows. Their future

work involves expanding their analysis to detect a variety of different vulnerabilities, "specifically those

that have lead to security breaches and financial losses in the past" (26).



CHAPTER 8

Conclusion

This thesis builds upon the existing Vandal framework extending its analysis to loops and resource-

based vulnerabilities. The tool can now calculate the total gas consumed for a given execution path in

a CFG, calculate upper bounds (maximum frequencies) for the number of iterations for a given loop

or edge, and can accurately identify three resource-based vulnerabilities: dynamically bounded loops,

Wallet Griefing, and the mass clearing of storage. This is the first framework that can identify and

analyze loops, and find vulnerabilities related to resource consumption and loops. These vulnerabilities

are easy to create when writing smart contracts, particularly for inexperienced Ethereum developers, and

can have serious consequences, especially because once a contract is deployed on the blockchain, it is

there forever. Ether or other tokens can be compromised, losing money. For example, the "government",

holding 1100 ETH (USD$330,000) become stuck due to the contract’s attempt to clear a large number

of elements in storage in a single transaction(15).

In Chapter 2, we outline our approach to building a gas calculator over a CFG, its advantages over other

frameworks, and the limitations of such a calculator in the context of static program analysis. We also

discussed the three vulnerabilities listed above and provided various examples of how they occur at a

high level in the Solidity programming language. In Chapter 3, we briefly described the framework the

thesis builds upon, a technical explanation of how these vulnerabilities occur in the EVM and in TAC,

and build logical specifications in datalog to identify them. An algorithm for calculating maximum

frequencies in polynomial time is constructed and analyzed, as well as a description of our integer linear

programming solution. Finally, we outline our results and discuss how other frameworks have attempted

to identify vulnerabilities using both dynamic and static program analysis.

Limits of our analysis exist for a variety of reasons. Some operations on the EVM consume a dynamic

amount of gas, depending on the data being manipulated. For example, the SSTORE operation can

consume either 5000 or 20000 gas depending on whether a value is being changed to from a non-zero
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value to a zero value or if a non-zero value is being set respectively. Since we take the worst case (20000)

for SSTORE and all other operations, our framework over-estimates gas consumption. Furthermore,

some contracts are very complicated which the framework is unable to decompile and hence we are

unable to analyze its associated CFG. Finally, the framework has not been updated to reflect changes

in Ethereum’s Byzantium updated, which occurred on 16 October 2017. It still reflects the state of the

EVM as of Ethereum Improvement Protocol 150’s adoption, which occurred over a year ago in response

to the spam attack on the Ethereum network (21)

This work can be improved in the future by extending its ability to find new vulnerabilities, identify

inefficient coding patterns, incorporate the changes made in Byzantium and future EIPs, and analyze

the information flow between multiple smart contracts, which are often inter-twined with one another to

create more complex functionality.
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APPENDIX A

Four Contracts Analyzed

Below are the raw results of the four contracts analyzed in Chapter 3.

Stox owned.hex
Number of Edges 48

Total Run Time (ILP) 0.69 seconds
Total Run Time (Iterative) 0.031 seconds

TABLE A.1: Summary of owned.hex ILP vs. Iterative Performance

Stox ownable.hex
Number of Edges 46

Total Run Time (ILP) 0.552 seconds
Total Run Time (Iterative) 0.039 seconds

TABLE A.2: Summary of ownable.hex ILP vs. Iterative Performance

Stox TokenHolder.hex
Number of Edges 76

Total Run Time (ILP) 1.407 seconds
Total Run Time (Iterative) 0.187 seconds

TABLE A.3: Summary of TokenHolder.hex ILP vs. Iterative Performance

Consensys Token.hex
Number of Edges 74

Total Run Time (ILP) 1.385 seconds
Total Run Time (Iterative) 0.128 seconds

TABLE A.4: Summary of Token.hex ILP vs. Iterative Performance
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APPENDIX B

Commands to run analysis

The script “analyse.py" was executed with the following parameters:

screen python3 analyse.py -d

<directory_of_contracts_to_analyze> -j <number_of_concurrent-jobs> -S

<souffle_executable_binary> -t

<timelimit_to_analyze_contracts> -T <bailout_limit>

For our experimentation, the script was run with the following parameters:

python3 analyse.py -d ~/dev/gas-analyzer/scrape-2017-07-28-block4081358

-j 48 -S ~/dev/souffle/src/souffle -t 120 -T 120

To run the decompiler, use the following command:

bin/decompile -b <contract_bytecode>.hex

This produces a string of output in the terminal consisting of TAC output and the maximum frequency

for each edge:
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FIGURE B.1: Sample TAC output using the token contract
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FIGURE B.2: Sample maximum frequency output using the token contract



APPENDIX C

Screenshot of Python maximum frequency scripts

FIGURE C.1: Screenshot of code that creates a common start and end node, and con-

verts basic blocks into weighted edges
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FIGURE C.2: Screenshot of the function that returns the maximum frequencies per

node using Dijkstras’ algorithm
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