-
Notifications
You must be signed in to change notification settings - Fork 2
/
freeze_e2e_cache.py
722 lines (623 loc) · 33.9 KB
/
freeze_e2e_cache.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import queue
import torch.multiprocessing as mp
import multiprocessing
import csv
import os
import logging
import argparse
import random
from tqdm import tqdm, trange
import pandas as pd
import math
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, Dataset
from torch.utils.data.sampler import RandomSampler, SequentialSampler, SubsetRandomSampler
from torch.utils.data.distributed import DistributedSampler
import time
import tokenization
from modeling_caching import BertConfig, BertForSequenceClassification, BertForSequenceClassificationTest
from optimization_lr import BERTAdam
import json
import statistics
import gc
import copy
from utils import *
os.environ["LRU_CACHE_CAPACITY"] = "3"
os.environ["OMP_NUM_THREADS"] = "1"
mp.set_sharing_strategy('file_system')
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def set_seed(seed):
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
#TODO: Do we need deterministic in cudnn ? Double check
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# print ("Seeded everything")
global_step = 0
nb_tr_examples = 0
nb_tr_steps = 0
tr_loss = 0
first_caching = {}
all_length = []
def eval_model(model, args, eval_dataloader, device, epoch, tr_loss, nb_tr_steps, eval_step):
model.eval()
eval_step = int(eval_step)
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
with open(os.path.join(args.output_dir, "results_ep_"+str(epoch)+".txt"),"w") as f:
for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
(tmp_eval_loss, logits), _ = model(input_ids, segment_ids, input_mask, label_ids)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
outputs = np.argmax(logits, axis=1)
for output in outputs:
f.write(str(output)+"\n")
tmp_eval_accuracy=np.sum(outputs == label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps}
output_eval_file = os.path.join(args.output_dir, "eval_results_ep_"+str(eval_step)+".txt")
print("output_eval_file=",output_eval_file)
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs==labels)
lengths = []
def frozen_model(bert_config, label_list, args, global_step, num_train_steps, device):
"""
"""
no_decay = ['bias', 'gamma', 'beta']
new_model = BertForSequenceClassification(bert_config, len(label_list))
new_optimizer_parameters = [
{'params': [p for n, p in new_model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in new_model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
new_optimizer = BERTAdam(new_optimizer_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_steps,
decay_factor=args.decay_factor)
torch.cuda.empty_cache()
new_model.load_state_dict(torch.load(args.output_dir + "/checkpoint-{}.pth.tar".format(int(global_step / args.grad_eval_step)))['state_dict'])
new_model.to(device)
model = new_model
optimizer = new_optimizer
return model, optimizer
def write_data(indices, data_queue, epoch, args, evt, length):
"""Write data generated from the current epoch to disk.
args:
indices: the indices mapping from original to shuffled
data_queue: the queue to store the data to be written to disk
epoch: write data at index <epoch>-<index%10> to disk
length: total number of data points to be written to disk
"""
indices = indices[epoch-1]
num=0
tmp_buffer = []
tmp_array = []
all_values = list(indices.values())
while True:
if num == length:
break
x = data_queue.get()
rel_index = indices[x[0]]
dir_name = rel_index // 10 + 1
dir_level2 = dir_name // 10 + 1
dir_level3 = dir_level2 // 10 + 1
dir_level4 = dir_level3 // 10 + 1
dir_level5 = dir_level4 // 10 + 1
dir_level6 = dir_level5 // 10 + 1
prefix_name = os.path.join(args.output_dir, str(dir_level6 % 10), str(dir_level5 % 10), str(dir_level4 % 10), str(dir_level3 % 10), str(dir_level2 % 10), str(dir_name % 10))
if os.path.exists( prefix_name) is False:
os.makedirs(prefix_name, exist_ok=True)
torch.save(x[1].cpu().detach().reshape((1, 512, 768)), prefix_name + "/" + str(epoch) + "-" + str(rel_index % 10) + ".pt")
del x
num += 1
def read_data(train_indices, new_cached_queue, epoch,args, evt, loading_x, length, evict):
"""Read data for the current epoch.
args:
train_indices: the indices mapping from original to shuffled
new_cached_queues: queues that store data read from disk
epoch: read data from the previous epoch
loading_x: number of data points loaded
evict: whether to evict the data or not
"""
print("In READ DATA: ", new_cached_queue.qsize())
start_time = time.time()
indices = train_indices
s = np.random.normal(0, 1, length)
while True:
if loading_x.value >= length:
break
# Constantly checking if new_cached_queue has slots to fill up from disk
index = indices[loading_x.value]
dir_name = index // 10 + 1
dir_level2 = dir_name // 10 + 1
dir_level3 = dir_level2 // 10 + 1
dir_level4 = dir_level3 // 10 + 1
dir_level5 = dir_level4 // 10 + 1
dir_level6 = dir_level5 // 10 + 1
prefix_name = os.path.join(args.output_dir, str(dir_level6 % 10), str(dir_level5 % 10), str(dir_level4 % 10), str(dir_level3 % 10), str(dir_level2 % 10), str(dir_name % 10))
if s[loading_x.value] > 1:
start = time.time()
x = torch.load(os.path.join(prefix_name, str(epoch - 1) + "-" + str(index % 10) + ".pt"), map_location="cpu")
if s[loading_x.value] > 1:
end = time.time()
new_cached_queue.put(x)
if evict:
os.remove(os.path.join(prefix_name, str(epoch - 1) + "-" + str(index % 10) + ".pt"))
# if s[loading_x.value] > 1:
# print("READED" + str(loading_x.value) + " TIME : " + str(end-start))
loading_x.value += 1
end_time = time.time()
print("LOADING TIME: ", end_time - start_time)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.")
parser.add_argument("--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train.")
parser.add_argument("--vocab_file",
default=None,
type=str,
required=True,
help="The vocabulary file that the BERT model was trained on.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--init_checkpoint",
default=None,
type=str,
help="Initial checkpoint (usually from a pre-trained BERT model).")
parser.add_argument("--do_lower_case",
default=False,
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
default=False,
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--discr",
default=False,
action='store_true',
help="Whether to do discriminative fine-tuning.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--save_checkpoints_steps",
default=1000,
type=int,
help="How often to save the model checkpoint.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--accumulate_gradients",
type=int,
default=1,
help="Number of steps to accumulate gradient on (divide the batch_size and accumulate)")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--grad_eval_step',
type=int,
default=500,
help="Number of iterations that evaluation.")
parser.add_argument('--num_datas',
type=int,
default=None,
help="Number of data points.")
parser.add_argument('--percentile',
type=int,
default=50,
help="Percentile for freezing. ")
parser.add_argument('--random_seeds',
type=str,
default=None,
help="Random seeds for each training epoch, separated by comma.")
parser.add_argument('--decay_factor',
type=int,
default=10,
help="Learning rate decay factor")
parser.add_argument('--num_intervals',
type=int,
default=10,
help="Number of evaluation intervals.")
args = parser.parse_args()
processors = {
"ag": AGNewsProcessor,
"ag_sep": AGNewsProcessor_sep,
"ag_sep_aug": AGNewsProcessor_sep_aug,
"imdb": IMDBProcessor,
"imdb_sep": IMDBProcessor_sep,
"imdb_sep_aug": IMDBProcessor_sep_aug,
"yelp_p": Yelp_p_Processor,
"yelp_f": Yelp_f_Processor,
"yahoo": Yahoo_Processor,
"trec": Trec_Processor,
"dbpedia":Dbpedia_Processor,
"mrpc": MrpcProcessor,
"sogou": Sogou_Processor
}
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
if args.accumulate_gradients < 1:
raise ValueError("Invalid accumulate_gradients parameter: {}, should be >= 1".format(
args.accumulate_gradients))
args.train_batch_size = int(args.train_batch_size / args.accumulate_gradients)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
bert_config = BertConfig.from_json_file(args.bert_config_file)
if args.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
args.max_seq_length, bert_config.max_position_embeddings))
# if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
# raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
os.makedirs(args.output_dir, exist_ok=True)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
tokenizer = tokenization.FullTokenizer(
vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
train_examples = None
num_train_steps = None
if args.do_train:
train_examples = processor.get_train_examples(args.data_dir, data_num = args.num_datas)
num_train_steps = int(
len(train_examples) / args.train_batch_size * args.num_train_epochs)
set_seed(0)
model = BertForSequenceClassification(bert_config, len(label_list))
if args.init_checkpoint is not None:
model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
no_decay = ['bias', 'gamma', 'beta']
if args.discr:
group1=['layer.0.','layer.1.','layer.2.','layer.3.']
group2=['layer.4.','layer.5.','layer.6.','layer.7.']
group3=['layer.8.','layer.9.','layer.10.','layer.11.']
group_all=['layer.0.','layer.1.','layer.2.','layer.3.','layer.4.','layer.5.','layer.6.','layer.7.','layer.8.','layer.9.','layer.10.','layer.11.']
optimizer_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and not any(nd in n for nd in group_all)],'weight_decay_rate': 0.01},
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and any(nd in n for nd in group1)],'weight_decay_rate': 0.01, 'lr': args.learning_rate/2.6},
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and any(nd in n for nd in group2)],'weight_decay_rate': 0.01, 'lr': args.learning_rate},
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and any(nd in n for nd in group3)],'weight_decay_rate': 0.01, 'lr': args.learning_rate*2.6},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and not any(nd in n for nd in group_all)],'weight_decay_rate': 0.0},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and any(nd in n for nd in group1)],'weight_decay_rate': 0.0, 'lr': args.learning_rate/2.6},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and any(nd in n for nd in group2)],'weight_decay_rate': 0.0, 'lr': args.learning_rate},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and any(nd in n for nd in group3)],'weight_decay_rate': 0.0, 'lr': args.learning_rate*2.6},
]
else:
optimizer_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
optimizer = BERTAdam(optimizer_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_steps,
decay_factor=args.decay_factor)
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
eval_dataloader = DataLoader(eval_data, batch_size=args.eval_batch_size, shuffle=False, num_workers=0)
global global_step
global nb_tr_examples, nb_tr_steps, tr_loss
if args.do_train:
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
print(len(train_features))
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
set_seed(0)
train_dataloader = DataLoader(train_data, sampler = train_sampler, batch_size=args.train_batch_size, num_workers=0)
orig_dataloader = train_dataloader # to be used in cache_data
old_param_dict = {}
model.eval()
for i in range(12):
old_param_dict[i] = []
grad_dict = None
all_dicts = []
start_layer = 0
prev_intermediate_grad_dict = None
prev_min_trainable_layer = 0
grad_tensor_dict = {} # gradient accumulator
cached_data = False
for name, param in model.bert.named_parameters():
grad_tensor_dict[name] = torch.zeros(param.shape).to(device)
set_seed(0)
all_indices = []
torch.multiprocessing.set_start_method('spawn', force=True)
prev_num_files = 0
train_indices = [] # List of dictionary storing the new index after shuffling -> original index mapping
train_indices_orig = []
seeds = [int(seed) for seed in args.random_seeds.split(',')]
if len(seeds) != int(args.num_train_epochs):
raise ValueError("Length of random seeds must equal to number of training epochs. ")
# Creates mapping from shuffled index to original index
for i in range(int(args.num_train_epochs)):
set_seed(seeds[i])
tmp_indices = [i for i in range(len(train_examples))]
shuffle_to_original = {}
original_to_shuffle = {}
train_indices_dataloader = DataLoader(tmp_indices, sampler=RandomSampler(tmp_indices), num_workers=0)
for step, batch in enumerate(tqdm(train_indices_dataloader)):
shuffle_to_original[step] = batch[0].item()
original_to_shuffle[batch[0].item()] = step
train_indices.append(shuffle_to_original)
train_indices_orig.append(original_to_shuffle)
epoch = 0
start_layer = 0
switch_interval = 0
unmodified_layer = False # Set to True if the number of frozen layers haven't changed
current_loading_epoch = None # The last epoch which we write new intermediate output data at
args.grad_eval_step = int(args.num_train_epochs * len(train_dataloader)* (1/args.num_intervals))
epoch_layer = 0 # Record the layer at the beginning of an epoch
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
epoch+=1
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
logger.info("*********Start layer*********")
print(start_layer)
loaded_bert = [] # store the intermediate output from disk
start_time = time.time()
manager = multiprocessing.Manager()
data_queue = mp.Queue() # queue to save intermediate outputs to be written to disk
prev_min_trainable_layer = epoch_layer
epoch_layer = start_layer # The layer to start caching at the current epoch
print("EPOCH layer is: ", epoch_layer)
if epoch >= 2 and epoch < args.num_train_epochs and epoch_layer > 0 and prev_min_trainable_layer != epoch_layer:
# if epoch >= 2, we could start a thread writing the data from data_queue to disk
evt = mp.Event()
new_loading_p = mp.Process(target=write_data, args=(train_indices, data_queue, epoch,args, evt, len(train_examples)))
new_loading_p.start()
set_seed(seeds[epoch-1])
logger.info("START TRAINING AT {}".format(epoch))
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
bert_last = None
model.train()
input_ids, input_mask, segment_ids, label_ids = batch
# if epoch >= 3, we could start loading the hidden states for training from new_cached_queue (poping from the queue)
if epoch >= 3 and prev_min_trainable_layer > 0:
# print("Cached queue size:", new_cached_queue.qsize())
bert_last = torch.zeros(len(input_ids), 512, 768, device=torch.device("cuda"))
for i in range(len(input_ids)):
# x = torch.zeros((1, 512, 768))
x = new_cached_queue.get()
bert_last[i,:, :] = x.to(device)
# print(bert_last)
if epoch > 0:
(loss,_), hidden_states = model(input_ids, segment_ids, input_mask, label_ids, start_layer=start_layer, prev_min_trainable_layer = prev_min_trainable_layer, caching_training=True, bert_last = bert_last)
if epoch >= 2 and epoch < args.num_train_epochs and epoch_layer > 0:
for i in range(len(input_ids)):
if prev_min_trainable_layer > 0:
if epoch_layer != prev_min_trainable_layer:
data_queue.put((step*args.train_batch_size+i, hidden_states[epoch_layer-prev_min_trainable_layer-1][i].cpu()))
elif epoch_layer > 0:
data_queue.put((step*args.train_batch_size+i, hidden_states[epoch_layer - 1][i].cpu()))
del bert_last
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
for name, param in model.bert.named_parameters():
param_list = name.split(".")
layer_num = 0
if param.grad is not None:
if name not in grad_tensor_dict.keys():
grad_tensor_dict[name] = param.grad
else:
grad_tensor_dict[name] += param.grad
current_grad_dict = {}
for i in range(12):
current_grad_dict[i] = 0
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step(current_step = global_step) # We have accumulated enought gradients
model.zero_grad()
if (global_step + 1) % args.grad_eval_step == 0 and global_step / args.grad_eval_step > 0:
logger.info("Start evaluating!")
# Saving checkpoints
state = {
'epoch': epoch+1,
'state_dict': model.state_dict(),
}
torch.save(state, args.output_dir + "/checkpoint-{}.pth.tar".format(int(global_step / args.grad_eval_step)))
if step < len(train_dataloader) - 1:
eval_model(model, args, eval_dataloader, device, epoch, tr_loss, nb_tr_steps, global_step / args.grad_eval_step)
# Calculate gradient changing ratio
for name in grad_tensor_dict.keys():
param_list = name.split(".")
layer_num = 0
for split_param in param_list:
try:
layer_num = int(split_param)
if "encoder" in name:
current_grad_dict[layer_num] += torch.norm(grad_tensor_dict[name].cpu().detach(), p=1).item()
except ValueError:
pass
print(current_grad_dict)
print("grad dict", current_grad_dict)
# Clear gradient accumulator
grad_tensor_dict = {}
for name, param in model.bert.named_parameters():
grad_tensor_dict[name] = torch.zeros(param.shape).to(device)
if prev_intermediate_grad_dict is None:
# Set gradient dict to be compared with for the first time
prev_intermediate_grad_dict = current_grad_dict
else:
threshold_dict = {}
for key in range(12):
threshold_dict[key] = 0
# Calculate gradient changing threshold
for key in current_grad_dict.keys() :
if current_grad_dict[key] > 0:
threshold_dict[key] = abs(prev_intermediate_grad_dict[key] - current_grad_dict[key]) / prev_intermediate_grad_dict[key]
median_value = np.percentile(list(threshold_dict.values())[start_layer:], args.percentile)
# Find out the first layer with ratio ge to the median value
for key in threshold_dict.keys():
if threshold_dict[key] >= median_value:
start_layer = key
break
prev_intermediate_grad_dict = current_grad_dict
print("threshold: ", threshold_dict)
print("layer num: ", start_layer)
if start_layer > 0 :
# New optimizer
model, optimizer = frozen_model(bert_config, label_list, args, global_step, num_train_steps, device)
logger.info("TRAINING FROM {}".format(str(start_layer)))
global_step += 1
if epoch >= 2 and epoch < args.num_train_epochs and epoch_layer > 0 and prev_min_trainable_layer != epoch_layer:
evt.set()
new_loading_p.join()
if epoch >= 3 and prev_min_trainable_layer > 0:
reading_evt.set()
new_reading_p.join()
# Eval model starts
if epoch > 1:
if epoch >= 2 and epoch < args.num_train_epochs and epoch_layer > 0:
new_cached_queue = mp.Queue(60000)
reading_evt = mp.Event()
current_loading_x = mp.Value('i', 0)
set_layer = False
if current_loading_epoch is None:
current_loading_epoch = epoch + 1
set_layer = True
if start_layer == epoch_layer:
new_reading_p = mp.Process(target=read_data, args=(train_indices[epoch], new_cached_queue, current_loading_epoch, args, reading_evt, current_loading_x, len(train_examples), False))
unmodified_layer = True
else:
if not set_layer and not unmodified_layer:
current_loading_epoch = epoch + 1
unmodified_layer = False
new_reading_p = mp.Process(target=read_data, args=(train_indices[epoch], new_cached_queue, current_loading_epoch, args, reading_evt, current_loading_x, len(train_examples), True))
new_reading_p.start()
eval_model(model, args, eval_dataloader, device, epoch, tr_loss, nb_tr_steps, (global_step-1) / args.grad_eval_step)
if __name__ == "__main__":
main()