-
Notifications
You must be signed in to change notification settings - Fork 24
/
train.lua
143 lines (116 loc) · 4.56 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
dofile('opts.lua')
dofile('util.lua')
dofile('dataset.lua')
dofile('model/util.lua')
require 'optim'
dofile('fbnn_Optim.lua')
assert(os.getenv('CUDA_VISIBLE_DEVICES') ~= nil and cutorch.getDeviceCount() <= 1, 'SHOULD RUN ON ONE GPU FOR NOW')
torch.manualSeed(opts.SEED)
cutorch.manualSeedAll(opts.SEED)
example_loader_options_preset = {
training = {
numRoisPerImage = 8192,
subset = 'trainval',
hflips = true,
numScales = 5,
},
evaluate = {
numRoisPerImage = 8192,
subset = 'trainval',
hflips = true,
numScales = 1,
}
}
if paths.extname(opts.PATHS.MODEL) == 'lua' then
loaded = model_load(opts.PATHS.MODEL, opts)
meta = {
model_path = loaded.model_path,
opts = opts,
example_loader_options = example_loader_options_preset
}
log = {{meta = meta}}
else
loaded = model_load(opts.PATHS.MODEL)
meta = loaded.meta
log = loaded.log
previous_epoch = loaded.epoch
end
batch_loader = ParallelBatchLoader(ExampleLoader(dataset, base_model.normalization_params, opts.IMAGE_SCALES, meta.example_loader_options)):setBatchSize({training = 1, evaluate = 1})
print(meta)
assert(model):cuda()
assert(criterion):cuda()
collectgarbage()
model:apply(function (x) x.for_each = x.apply end)
optimizer = nn.Optim(model, optimState)
optimalg = optim.sgd
for epoch = (previous_epoch or 0) + 1, opts.NUM_EPOCHS do
if epoch > optimState_annealed.epoch then
optimizer:setParameters(optimState_annealed)
end
batch_loader:training()
model:training()
for batchIdx = 1, batch_loader:getNumBatches() -1 do
tic = torch.tic()
scale_batches = batch_loader:forward()[1]
scale0_rois = scale_batches[1][2]
batch_images, batch_rois, batch_labels = unpack(scale_batches[2])
batch_images_gpu = (batch_images_gpu or torch.CudaTensor()):resize(batch_images:size()):copy(batch_images)
batch_labels_gpu = (batch_labels_gpu or torch.CudaTensor()):resize(batch_labels:size()):copy(batch_labels)
cost = optimizer:optimize(optimalg, {batch_images_gpu, batch_rois}, batch_labels_gpu, criterion)
collectgarbage()
print('epoch', epoch, 'batch', batchIdx, cost, 'img/sec', batch_images:size(1) / torch.toc(tic))
end
if epoch % 5 == 0 or epoch == opts.NUM_EPOCHS or epoch == 1 then
batch_loader:evaluate()
model:evaluate()
scores, labels, rois, costs, outputs, corlocs = {}, {}, {}, {}, {}, {}
for batchIdx = 1, batch_loader:getNumBatches() - 1 do
tic = torch.tic()
scale_batches = batch_loader:forward()[1]
scale0_rois = scale_batches[1][2]
scale_outputs, scale_scores, scale_costs = {}, {}, {}
for i = 2, #scale_batches do
batch_images, batch_rois, batch_labels = unpack(scale_batches[i])
batch_images_gpu = (batch_images_gpu or torch.CudaTensor()):resize(batch_images:size()):copy(batch_images)
batch_labels_gpu = (batch_labels_gpu or torch.CudaTensor()):resize(batch_labels:size()):copy(batch_labels)
batch_scores = model:forward({batch_images_gpu, batch_rois})
cost = criterion:forward(batch_scores, batch_labels_gpu)
table.insert(scale_scores, (type(batch_scores) == 'table' and batch_scores[1] or batch_scores):float())
table.insert(scale_costs, cost)
for _, output_field in ipairs(opts.OUTPUT_FIELDS) do
module = model:findModules(output_field)[1]
if module then
scale_outputs[output_field] = scale_outputs[output_field] or {}
table.insert(scale_outputs[output_field], module.output:transpose(2, 3):float())
end
end
end
for output_field, output in pairs(scale_outputs) do
outputs[output_field] = outputs[output_field] or {}
table.insert(outputs[output_field], torch.cat(output, 1):mean(1)[1])
end
table.insert(costs, torch.FloatTensor(scale_costs):mean())
table.insert(scores, torch.cat(scale_scores, 1):mean(1))
table.insert(labels, batch_labels:clone())
table.insert(rois, scale0_rois:narrow(scale0_rois:dim(), 1, 4):clone()[1])
collectgarbage()
print('val', 'epoch', epoch, 'batch', batchIdx, costs[#costs], 'img/sec', (#scale_batches - 1) / torch.toc(tic))
end
for output_field, output in pairs(outputs) do
corlocs[output_field] = corloc(dataset[batch_loader.example_loader:getSubset(batch_loader.train)], {output, rois})
end
table.insert(log, {
training = false,
epoch = epoch,
mAP = dataset_tools.meanAP(torch.cat(scores, 1), torch.cat(labels, 1)),
corlocs = corlocs,
valCost = torch.FloatTensor(costs):mean(),
})
end
if epoch % 5 == 0 or epoch == opts.NUM_EPOCHS then
model:clearState()
model_save(opts.PATHS.CHECKPOINT_PATTERN:format(epoch), model, meta, epoch, log)
end
json_save(opts.PATHS.LOG, log)
io.stderr:write('log in "', opts.PATHS.LOG, '"\n')
end