-
Notifications
You must be signed in to change notification settings - Fork 0
/
15_cnn.py
60 lines (51 loc) · 2.31 KB
/
15_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 26 17:30:46 2019
@author: hp
"""
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout, BatchNormalization
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(BatchNormalization())
classifier.add(Dropout(0.2))
classifier.add(MaxPool2D(pool_size = (2, 2)))
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(BatchNormalization())
classifier.add(Dropout(0.2))
classifier.add(MaxPool2D(pool_size = (2, 2)))
classifier.add(Conv2D(64, (3, 3), activation = 'relu'))
classifier.add(BatchNormalization())
classifier.add(Dropout(0.2))
classifier.add(MaxPool2D(pool_size = (2, 2)))
classifier.add(Conv2D(64, (3, 3), activation = 'relu'))
classifier.add(BatchNormalization())
classifier.add(Dropout(0.2))
classifier.add(MaxPool2D(pool_size = (2, 2)))
classifier.add(Flatten())
classifier.add(Dense(units = 64, activation = 'relu'))
classifier.add(BatchNormalization())
classifier.add(Dense(units = 1, activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(training_set,
steps_per_epoch = 8000/32,
epochs = 5,
validation_data = test_set,
validation_steps = 2000/32)