-
Notifications
You must be signed in to change notification settings - Fork 0
/
TomatoImage_Classification.py
200 lines (168 loc) · 7.22 KB
/
TomatoImage_Classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python3
"""TomatoImage_Classification.py: Pytorch classification network ."""
__author__ = "Viet Toan"
__copyright__ = "Copyright 2019, AI Group"
__license__ = "BSD 3-Clause"
__version__ = "1.0.0"
__email__ = "viettoan151@gmail.com"
__status__ = "Development"
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
from torchvision import datasets, transforms
import pandas as pd
import argparse
import numpy as np
from torch.optim.lr_scheduler import StepLR
model_name = 'tomato.pt'
class TomatoDataset(data.Dataset):
def __init__(self, label_file, transform):
self.label_dataframe = pd.read_csv(label_file, header=0)
self.transform = transform
def __len__(self):
return len(self.label_dataframe)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
image_path = self.label_dataframe.iloc[idx, 1]
image = cv2.imread(image_path)
image = np.array(image, dtype= np.float)
if self.transform:
image = self.transform(image)
label = self.label_dataframe.iloc[idx, 2]
return image, label
class RandomRotate(object):
def __call__(self, image):
seed = np.random.randint(0,4)
np.rot90(image,seed)
return image
class NormalizeImage(object):
def __call__(self, image):
image *= 255.0/image.max()
return image
class ToTensor(object):
def __call__(self, image):
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2, 0, 1))
return torch.from_numpy(image)
class ColorNet(nn.Module):
def __init__(self):
super(ColorNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5, 4)
self.conv2 = nn.Conv2d(16, 32, 4, 2)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(3872, 128)
self.fc2 = nn.Linear(128, 3)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device, dtype=torch.float), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device, dtype=torch.float), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=5, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=True,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=True,
help='For Saving the current Model')
# Parse arguments
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_dataset = TomatoDataset('training\\feature\\label.csv',
transform= transforms.Compose([
NormalizeImage(),
RandomRotate(),
ToTensor()
]))
test_dataset = TomatoDataset('testing\\feature\\label.csv',
transform= transforms.Compose([
NormalizeImage(),
RandomRotate(),
ToTensor()
]))
# Train_loader
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size, shuffle=True, **kwargs)
# Test_loader
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = ColorNet().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
# Session run for training and testing
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
scheduler.step()
if args.save_model:
torch.save(model.state_dict(), "tomato.pt")
# export to onnx
with torch.no_grad():
# test batch = 1, image size 3x200x200
dummy_input = torch.rand(1,3,200,200, device=device, dtype=torch.float)
#input_names = ["actual_input_1"] + ["learned_%d" % i for i in range(16)]
#output_names = ["output1"]
torch.onnx.export(model, dummy_input, 'tomato.onnx', export_params = True, verbose=True )
if __name__ == '__main__':
main()