forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFordFulkerson.java
92 lines (75 loc) · 2.41 KB
/
FordFulkerson.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/**
* @author dbatchunag
*/
import java.util.*;
public class FordFulkerson {
private final int V = 6;
//Check if there is a path from source to target in residue graph.
private boolean bfs(final int[][] resGraph, final int source, final int target, final int[] parent)
{
// Create a visited array and mark all vertices as not visited
final boolean[] visited = new boolean[V];
// Create a queue, enqueue source vertex
// and mark source vertex as visited
final Deque<Integer> queue= new ArrayDeque<>();
//We start from s, marking as visited.
queue.push(source);
visited[source] = true;
parent[source] = -1;
// Standard BFS Loop
while (!queue.isEmpty()) {
final int u = queue.pollFirst();
for (int v=0; v<V; v++) {
if (!visited[v] && resGraph[u][v] > 0) {
//Put the neighbors to the queue
queue.push(v);
//keep track for augmenting path
parent[v] = u;
visited[v] = true;
}
}
}
//augmenting path is found
return visited[target];
}
private int fordFulkerson(final int[][] graph, final int source, final int target)
{
final int[][] residualGraph = graph.clone();
final int[] parent= new int[V];
int max_flow = 0;
// Augment the flow while there is path from source to sink
while (bfs(residualGraph, source, target, parent))
{
//augmenting path can be constructed through parent
int path_flow = Integer.MAX_VALUE;
for (int v=target; v!=source; v=parent[v]) {
final int u = parent[v];
//get the maximum possible size augmenting flow
path_flow = Math.min(path_flow, residualGraph[u][v]);
}
//update the graph
for (int v=target; v != source; v=parent[v]) {
final int u = parent[v];
residualGraph[u][v] -= path_flow;
residualGraph[v][u] += path_flow;
}
max_flow += path_flow;
}
return max_flow;
}
private void run() {
// Let us create a graph shown in the above example
final int[][] graph = new int[][] {
{0, 16, 13, 0, 0, 0},
{0, 0, 10, 12, 0, 0},
{0, 4, 0, 0, 14, 0},
{0, 0, 9, 0, 0, 20},
{0, 0, 0, 7, 0, 4},
{0, 0, 0, 0, 0, 0}
};
System.out.println(String.format("The maximum possible flow is %d", fordFulkerson(graph, 0, 5)));
}
public static void main(String[] args) {
new FordFulkerson().run();
}
}