Skip to content

Adversarial learning for MRI reconstruction and classification of cognitively impaired individuals

License

Notifications You must be signed in to change notification settings

vkola-lab/access2024

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adversarial learning for MRI reconstruction and classification of cognitively impaired individuals

This work is published in IEEE Access (https://doi.org/10.1109/ACCESS.2024.3408840).

Introduction

This is the repo for the model proposed in the paper. Briefly, the model performs medical image (scans) reconstruction. The result shows that the reconstructed scans not only have better image quality, but also improves the prediction accuracy of MRI progression (sMRI vs pMRI).

The model is trained on a dataset from ADNI and evaluated on an exteranl dataset from NACC.

Image quality metrics:

(a) Results on ADNI cohort test partition

Input Images CNR SNR SSIM BRISQUE PIQE
Original 2.111±0.274 0.686±0.052 - 43.513±1.594 41.936±2.062
Diced 0.726±0.131 0.537±0.046 0.319±0.065 43.567±0.333 78.307±5.322
GAN-VAN 2.235±0.299 1.857±0.214 0.544±0.051 42.485±0.741 72.028±3.068
GAN-NOV 1.934±0.335 1.437±0.395 0.580±0.059 42.246±0.563 68.120±1.351

(b) Results on NACC cohort

Input Images CNR SNR SSIM BRISQUE PIQE
Original 2.065±0.294 0.676±0.074 - 44.292±2.940 43.182±6.298
Diced 0.696±0.156 0.526±0.074 0.348±0.108 43.742±1.256 78.442±4.695
GAN-VAN 2.193±0.359 1.821±0.230 0.523±0.105 42.563±1.128 72.133±4.024
GAN-NOV 1.790±0.363 1.432±0.534 0.553±0.116 42.505±1.066 68.176±2.079

MRI progression prediction performance:

(a) Results on ADNI cohort test partition

Input Images Accuracy Precision F1-score MCC
Original 0.794±0.033 0.795±0.032 0.785±0.036 0.516±0.081
Diced 0.703±0.064 0.681±0.082 0.665±0.080 0.254±0.145
GAN-VAN 0.709±0.069 0.711±0.084 0.653±0.079 0.270±0.130
GAN-NOV 0.709±0.042 0.697±0.062 0.694±0.060 0.303±0.133

(b) Results on NACC cohort

Input Images Accuracy Precision F1-score MCC
Original 0.675±0.006 0.683±0.004 0.671±0.007 0.358±0.010
Diced 0.597±0.021 0.624±0.021 0.573±0.028 0.219±0.042
GAN-VAN 0.589±0.025 0.625±0.021 0.556±0.039 0.211±0.047
GAN-NOV 0.640±0.017 0.650±0.014 0.634±0.019 0.289±0.030

See the paper for additional information

Quick start

  1. CUBLAS_WORKSPACE_CONFIG=:4096:8 python rcgan_main.py (Train and generate scans for single G)
  2. CUBLAS_WORKSPACE_CONFIG=:4096:8 python rcgans_main.py (Train and generate scans for multiple G)
  3. CUBLAS_WORKSPACE_CONFIG=:4096:8 python classifier_main.py (Evaluate prediction performance using CNN)
  4. (optional, in plot/) python plot.py
  5. (optional, image quality) python image_quality.py
  6. (optional, MCC) python matrix_stat.py

Environments

  1. Install python3
  2. Install the environments.yml (Anaconda environment)
  3. (optional, image quality) Install matlab for python (if standard method not work, try: sudo python setup.py install --prefix="/home/xzhou/anaconda3/envs/py36/")

Data Preprocessing

The data preprocessing follows a similar procedure as in this work: (https://github.com/vkola-lab/mri-surv-dev)

Hyper-parameter Tuning

The json files that contains 'config' name (i.e. config.json) are the files that can be used to modify most of the hyperparameters.

About

Adversarial learning for MRI reconstruction and classification of cognitively impaired individuals

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published