-
Notifications
You must be signed in to change notification settings - Fork 28
/
hrcalc.py
195 lines (160 loc) · 7.07 KB
/
hrcalc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*-coding:utf-8
import numpy as np
# 25 samples per second (in algorithm.h)
SAMPLE_FREQ = 25
# taking moving average of 4 samples when calculating HR
# in algorithm.h, "DONOT CHANGE" comment is attached
MA_SIZE = 4
# sampling frequency * 4 (in algorithm.h)
BUFFER_SIZE = 100
# this assumes ir_data and red_data as np.array
def calc_hr_and_spo2(ir_data, red_data):
"""
By detecting peaks of PPG cycle and corresponding AC/DC
of red/infra-red signal, the an_ratio for the SPO2 is computed.
"""
# get dc mean
ir_mean = int(np.mean(ir_data))
# remove DC mean and inver signal
# this lets peak detecter detect valley
x = -1 * (np.array(ir_data) - ir_mean)
# 4 point moving average
# x is np.array with int values, so automatically casted to int
for i in range(x.shape[0] - MA_SIZE):
x[i] = np.sum(x[i:i+MA_SIZE]) / MA_SIZE
# calculate threshold
n_th = int(np.mean(x))
n_th = 30 if n_th < 30 else n_th # min allowed
n_th = 60 if n_th > 60 else n_th # max allowed
ir_valley_locs, n_peaks = find_peaks(x, BUFFER_SIZE, n_th, 4, 15)
# print(ir_valley_locs[:n_peaks], ",", end="")
peak_interval_sum = 0
if n_peaks >= 2:
for i in range(1, n_peaks):
peak_interval_sum += (ir_valley_locs[i] - ir_valley_locs[i-1])
peak_interval_sum = int(peak_interval_sum / (n_peaks - 1))
hr = int(SAMPLE_FREQ * 60 / peak_interval_sum)
hr_valid = True
else:
hr = -999 # unable to calculate because # of peaks are too small
hr_valid = False
# ---------spo2---------
# find precise min near ir_valley_locs (???)
exact_ir_valley_locs_count = n_peaks
# find ir-red DC and ir-red AC for SPO2 calibration ratio
# find AC/DC maximum of raw
# FIXME: needed??
for i in range(exact_ir_valley_locs_count):
if ir_valley_locs[i] > BUFFER_SIZE:
spo2 = -999 # do not use SPO2 since valley loc is out of range
spo2_valid = False
return hr, hr_valid, spo2, spo2_valid
i_ratio_count = 0
ratio = []
# find max between two valley locations
# and use ratio between AC component of Ir and Red DC component of Ir and Red for SpO2
red_dc_max_index = -1
ir_dc_max_index = -1
for k in range(exact_ir_valley_locs_count-1):
red_dc_max = -16777216
ir_dc_max = -16777216
if ir_valley_locs[k+1] - ir_valley_locs[k] > 3:
for i in range(ir_valley_locs[k], ir_valley_locs[k+1]):
if ir_data[i] > ir_dc_max:
ir_dc_max = ir_data[i]
ir_dc_max_index = i
if red_data[i] > red_dc_max:
red_dc_max = red_data[i]
red_dc_max_index = i
red_ac = int((red_data[ir_valley_locs[k+1]] - red_data[ir_valley_locs[k]]) * (red_dc_max_index - ir_valley_locs[k]))
red_ac = red_data[ir_valley_locs[k]] + int(red_ac / (ir_valley_locs[k+1] - ir_valley_locs[k]))
red_ac = red_data[red_dc_max_index] - red_ac # subtract linear DC components from raw
ir_ac = int((ir_data[ir_valley_locs[k+1]] - ir_data[ir_valley_locs[k]]) * (ir_dc_max_index - ir_valley_locs[k]))
ir_ac = ir_data[ir_valley_locs[k]] + int(ir_ac / (ir_valley_locs[k+1] - ir_valley_locs[k]))
ir_ac = ir_data[ir_dc_max_index] - ir_ac # subtract linear DC components from raw
nume = red_ac * ir_dc_max
denom = ir_ac * red_dc_max
if (denom > 0 and i_ratio_count < 5) and nume != 0:
# original cpp implementation uses overflow intentionally.
# but at 64-bit OS, Pyhthon 3.X uses 64-bit int and nume*100/denom does not trigger overflow
# so using bit operation ( &0xffffffff ) is needed
ratio.append(int(((nume * 100) & 0xffffffff) / denom))
i_ratio_count += 1
# choose median value since PPG signal may vary from beat to beat
ratio = sorted(ratio) # sort to ascending order
mid_index = int(i_ratio_count / 2)
ratio_ave = 0
if mid_index > 1:
ratio_ave = int((ratio[mid_index-1] + ratio[mid_index])/2)
else:
if len(ratio) != 0:
ratio_ave = ratio[mid_index]
# why 184?
# print("ratio average: ", ratio_ave)
if ratio_ave > 2 and ratio_ave < 184:
# -45.060 * ratioAverage * ratioAverage / 10000 + 30.354 * ratioAverage / 100 + 94.845
spo2 = -45.060 * (ratio_ave**2) / 10000.0 + 30.054 * ratio_ave / 100.0 + 94.845
spo2_valid = True
else:
spo2 = -999
spo2_valid = False
return hr, hr_valid, spo2, spo2_valid
def find_peaks(x, size, min_height, min_dist, max_num):
"""
Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE
"""
ir_valley_locs, n_peaks = find_peaks_above_min_height(x, size, min_height, max_num)
ir_valley_locs, n_peaks = remove_close_peaks(n_peaks, ir_valley_locs, x, min_dist)
n_peaks = min([n_peaks, max_num])
return ir_valley_locs, n_peaks
def find_peaks_above_min_height(x, size, min_height, max_num):
"""
Find all peaks above MIN_HEIGHT
"""
i = 0
n_peaks = 0
ir_valley_locs = [] # [0 for i in range(max_num)]
while i < size - 1:
if x[i] > min_height and x[i] > x[i-1]: # find the left edge of potential peaks
n_width = 1
# original condition i+n_width < size may cause IndexError
# so I changed the condition to i+n_width < size - 1
while i + n_width < size - 1 and x[i] == x[i+n_width]: # find flat peaks
n_width += 1
if x[i] > x[i+n_width] and n_peaks < max_num: # find the right edge of peaks
# ir_valley_locs[n_peaks] = i
ir_valley_locs.append(i)
n_peaks += 1 # original uses post increment
i += n_width + 1
else:
i += n_width
else:
i += 1
return ir_valley_locs, n_peaks
def remove_close_peaks(n_peaks, ir_valley_locs, x, min_dist):
"""
Remove peaks separated by less than MIN_DISTANCE
"""
# should be equal to maxim_sort_indices_descend
# order peaks from large to small
# should ignore index:0
sorted_indices = sorted(ir_valley_locs, key=lambda i: x[i])
sorted_indices.reverse()
# this "for" loop expression does not check finish condition
# for i in range(-1, n_peaks):
i = -1
while i < n_peaks:
old_n_peaks = n_peaks
n_peaks = i + 1
# this "for" loop expression does not check finish condition
# for j in (i + 1, old_n_peaks):
j = i + 1
while j < old_n_peaks:
n_dist = (sorted_indices[j] - sorted_indices[i]) if i != -1 else (sorted_indices[j] + 1) # lag-zero peak of autocorr is at index -1
if n_dist > min_dist or n_dist < -1 * min_dist:
sorted_indices[n_peaks] = sorted_indices[j]
n_peaks += 1 # original uses post increment
j += 1
i += 1
sorted_indices[:n_peaks] = sorted(sorted_indices[:n_peaks])
return sorted_indices, n_peaks