-
Notifications
You must be signed in to change notification settings - Fork 67
/
Utils.py
526 lines (439 loc) · 16.3 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
#
# Authors: Bowen Wen
# Contact: wenbowenxjtu@gmail.com
# Created in 2020
#
# Copyright (c) Rutgers University, 2020 All rights reserved.
#
# Wen, B., C. Mitash, B. Ren, and K. E. Bekris. "se (3)-TrackNet:
# Data-driven 6D Pose Tracking by Calibrating Image Residuals in
# Synthetic Domains." In IEEE/RSJ International Conference on Intelligent
# Robots and Systems (IROS). 2020.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the PRACSYS, Bowen Wen, Rutgers University,
# nor the names of its contributors may be used to
# endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import os, sys, time
import open3d as o3d
import cv2
from PIL import Image
import numpy as np
sys.path.append('/../')
import math,glob,re,copy
from scipy.spatial import ConvexHull, distance_matrix
import scipy.spatial as spatial
import transformations
import random
import transformations as T
from scipy import ndimage
COLOR_MAP=np.array([[0, 0, 0], #Ignore
[128,0,0], #Background
[0,128,0], #Wall
[128,128,0], #Floor
[0,0,128], #Ceiling
[128,0,128], #Table
[0,128,128], #Chair
[128,128,128], #Window
[64,0,0], #Door
[192,0,0], #Monitor
[64, 128, 0], # 11th
[192, 0, 128],
[64, 128, 128],
[192, 128, 128],
[0, 64, 0],
[128, 64, 0],
[0, 192, 0],
[128, 192, 0], # defined for 18 classes currently
])
def add(pred,gt,model):
"""
Average Distance of Model Points for objects with no indistinguishable views
- by Hinterstoisser et al. (ACCV 2012).
"""
pred_model = copy.deepcopy(model)
gt_model = copy.deepcopy(model)
pred_model.transform(pred)
gt_model.transform(gt)
e = np.linalg.norm(np.asarray(pred_model.points) - np.asarray(gt_model.points), axis=1).mean()
return e
def adi(pred,gt,model):
"""
@pred: 4x4 mat
@gt:
@model: open3d pcd model
"""
pred_model = copy.deepcopy(model)
gt_model = copy.deepcopy(model)
pred_model.transform(pred)
gt_model.transform(gt)
nn_index = spatial.cKDTree(np.asarray(pred_model.points).copy())
nn_dists, _ = nn_index.query(np.asarray(gt_model.points).copy(), k=1, n_jobs=10)
e = nn_dists.mean()
return e
def compute_cloud_diameter(points):
hull = ConvexHull(points)
hull_points = points[hull.vertices]
distances = distance_matrix(hull_points, hull_points)
return np.max(distances)
def findClassContainedVideosYcb(class_id, testset=True):
ycb_dir = '/media/bowen/e25c9489-2f57-42dd-b076-021c59369fec/DATASET/Tracking/YCB_Video_Dataset/data_organized/'
gt_dirs = glob.glob(ycb_dir+'**/pose_gt')
gt_dirs.sort()
video_indices = []
for i in range(len(gt_dirs)):
gt_dir = gt_dirs[i]+'/'
video_index = re.findall(r'/[0-9]{4}/',gt_dir)[0][1:-1]
video_index = int(video_index)
if testset:
if video_index<48 or video_index>59:
continue
indices = list(map(int,os.listdir(gt_dir)))
if class_id in indices:
video_indices.append(video_index)
return video_indices
def makeCanvas(imgs, flipBR=True):
'''
@imgs: list of images, assume same sizes
@flipBR: flip B and R channel for opencv
'''
num_imgs = len(imgs)
H = imgs[0].shape[0]
W = imgs[0].shape[1]
gap = 10
canvas = np.zeros((H, W*num_imgs+gap*(num_imgs-1),3))
start_w = 0
for i in range(len(imgs)):
cur_img = imgs[i].copy()
if flipBR:
cur_img[:,:,0] = imgs[i][:,:,2]
cur_img[:,:,2] = imgs[i][:,:,0]
canvas[:,start_w:(start_w+W)] = cur_img
start_w += W+gap
canvas = canvas.astype(np.uint8)
return canvas
def rgbd2PointCloud(K, depth, rgb=np.array([])):
mask=np.logical_and(depth>0.1,depth<2)
vs, us = np.where(mask)
zs = depth[mask]
xs = ((us - K[0, 2]) * zs) / float(K[0, 0])
ys = ((vs - K[1, 2]) * zs) / float(K[1, 1])
pts = np.array([xs, ys, zs]).T
if rgb != np.array([]):
colors = rgb[vs, us, :]
else:
colors = None
return pts, colors, mask
def toOpen3dCloud(points,colors=None):
import open3d as o3d
cloud = o3d.geometry.PointCloud()
cloud.points = o3d.utility.Vector3dVector(points.astype(np.float64))
if colors is not None:
cloud.colors = o3d.utility.Vector3dVector(colors.astype(np.float64)/255.0)
return cloud
def hinter_sampling(min_n_pts, radius=1):
a, b, c = 0.0, 1.0, (1.0 + math.sqrt(5.0)) / 2.0
pts = [(-b, c, a), (b, c, a), (-b, -c, a), (b, -c, a), (a, -b, c), (a, b, c),
(a, -b, -c), (a, b, -c), (c, a, -b), (c, a, b), (-c, a, -b), (-c, a, b)]
faces = [(0, 11, 5), (0, 5, 1), (0, 1, 7), (0, 7, 10), (0, 10, 11), (1, 5, 9),
(5, 11, 4), (11, 10, 2), (10, 7, 6), (7, 1, 8), (3, 9, 4), (3, 4, 2),
(3, 2, 6), (3, 6, 8), (3, 8, 9), (4, 9, 5), (2, 4, 11), (6, 2, 10),
(8, 6, 7), (9, 8, 1)]
# Refinement level on which the points were created
pts_level = [0 for _ in range(len(pts))]
ref_level = 0
while len(pts) < min_n_pts:
ref_level += 1
edge_pt_map = {}
faces_new = []
for face in faces:
pt_inds = list(face)
for i in range(3):
edge = (face[i], face[(i + 1) % 3])
edge = (min(edge), max(edge))
if edge not in edge_pt_map.keys():
pt_new_id = len(pts)
edge_pt_map[edge] = pt_new_id
pt_inds.append(pt_new_id)
pt_new = 0.5 * (np.array(pts[edge[0]]) + np.array(pts[edge[1]]))
pts.append(pt_new.tolist())
pts_level.append(ref_level)
else:
pt_inds.append(edge_pt_map[edge])
faces_new += [(pt_inds[0], pt_inds[3], pt_inds[5]),
(pt_inds[3], pt_inds[1], pt_inds[4]),
(pt_inds[3], pt_inds[4], pt_inds[5]),
(pt_inds[5], pt_inds[4], pt_inds[2])]
faces = faces_new
pts = np.array(pts)
pts *= np.reshape(radius / np.linalg.norm(pts, axis=1), (pts.shape[0], 1))
pt_conns = {}
for face in faces:
for i in range(len(face)):
pt_conns.setdefault(face[i], set()).add(face[(i + 1) % len(face)])
pt_conns[face[i]].add(face[(i + 2) % len(face)])
top_pt_id = np.argmax(pts[:, 2])
pts_ordered = []
pts_todo = [top_pt_id]
pts_done = [False for _ in range(pts.shape[0])]
def calc_azimuth(x, y):
two_pi = 2.0 * math.pi
return (math.atan2(y, x) + two_pi) % two_pi
while len(pts_ordered) != pts.shape[0]:
pts_todo = sorted(pts_todo, key=lambda i: calc_azimuth(pts[i][0], pts[i][1]))
pts_todo_new = []
for pt_id in pts_todo:
pts_ordered.append(pt_id)
pts_done[pt_id] = True
pts_todo_new += [i for i in pt_conns[pt_id]]
pts_todo = [i for i in set(pts_todo_new) if not pts_done[i]]
pts = pts[np.array(pts_ordered), :]
pts_level = [pts_level[i] for i in pts_ordered]
pts_order = np.zeros((pts.shape[0],))
pts_order[np.array(pts_ordered)] = np.arange(pts.shape[0])
for face_id in range(len(faces)):
faces[face_id] = [pts_order[i] for i in faces[face_id]]
return pts, pts_level
def sample_views(min_n_views, radius=[1],
azimuth_range=(0, 2 * math.pi),
elev_range=(-0.5 * math.pi, 0.5 * math.pi)):
pts=np.empty((0,3))
if True:
for r in radius:
local_pts, pts_level = hinter_sampling(min_n_views, radius=r)
print('radius={}, pts shape={}'.format(r,local_pts.shape))
pts=np.vstack((pts,local_pts))
else:
pts = fibonacci_sampling(min_n_views + 1, radius=radius)
pts_level = [0 for _ in range(len(pts))]
views = []
for pt in pts:
azimuth = math.atan2(pt[1], pt[0])
if azimuth < 0:
azimuth += 2.0 * math.pi
a = np.linalg.norm(pt)
b = np.linalg.norm([pt[0], pt[1], 0])
elev = math.acos(b / a)
if pt[2] < 0:
elev = -elev
if not (azimuth_range[0] <= azimuth <= azimuth_range[1] and
elev_range[0] <= elev <= elev_range[1]):
continue
f = -np.array(pt) # Forward direction
f /= np.linalg.norm(f)
u = np.array([0.0, 0.0, 1.0]) # Up direction
s = np.cross(f, u) # Side direction
if np.count_nonzero(s) == 0:
# f and u are parallel, i.e. we are looking along or against Z axis
s = np.array([1.0, 0.0, 0.0])
s /= np.linalg.norm(s)
u = np.cross(s, f) # Recompute up
R = np.array([[s[0], s[1], s[2]],
[u[0], u[1], u[2]],
[-f[0], -f[1], -f[2]]])
R_yz_flip = transformations.rotation_matrix(math.pi, [1, 0, 0])[:3, :3]
R = R_yz_flip.dot(R)
t = -R.dot(np.array(pt).reshape((3, 1)))
views.append({'R': R, 't': t})
return views, pts_level
def compute_bbox(pose, K, scale_size=230, scale=(1, 1, 1)):
obj_x = pose[0, 3] * scale[0]
obj_y = pose[1, 3] * scale[1]
obj_z = pose[2, 3] * scale[2]
offset = scale_size / 2
points = np.ndarray((4, 3), dtype=np.float)
points[0] = [obj_x - offset, obj_y - offset, obj_z] # top left
points[1] = [obj_x - offset, obj_y + offset, obj_z] # top right
points[2] = [obj_x + offset, obj_y - offset, obj_z] # bottom left
points[3] = [obj_x + offset, obj_y + offset, obj_z] # bottom right
projected_vus = np.zeros((points.shape[0], 2))
projected_vus[:, 1] = points[:, 0] * K[0,0] / points[:, 2] + K[0,2]
projected_vus[:, 0] = points[:, 1] * K[1,1] / points[:, 2] + K[1,2]
projected_vus = np.round(projected_vus).astype(np.int32)
return projected_vus
def crop_bbox(color, depth, boundingbox, output_size=(100, 100), seg=None):
left = np.min(boundingbox[:, 1])
right = np.max(boundingbox[:, 1])
top = np.min(boundingbox[:, 0])
bottom = np.max(boundingbox[:, 0])
h, w, c = color.shape
crop_w = right - left
crop_h = bottom - top
color_crop = np.zeros((crop_h, crop_w, 3), dtype=color.dtype)
depth_crop = np.zeros((crop_h, crop_w), dtype=np.float)
seg_crop = np.zeros((crop_h, crop_w), dtype=np.uint8)
top_offset = abs(min(top, 0))
bottom_offset = min(crop_h - (bottom - h), crop_h)
right_offset = min(crop_w - (right - w), crop_w)
left_offset = abs(min(left, 0))
top = max(top, 0)
left = max(left, 0)
bottom = min(bottom, h)
right = min(right, w)
color_crop[top_offset:bottom_offset, left_offset:right_offset, :] = color[top:bottom, left:right, :]
depth_crop[top_offset:bottom_offset, left_offset:right_offset] = depth[top:bottom, left:right]
resized_rgb = cv2.resize(color_crop, output_size, interpolation=cv2.INTER_NEAREST)
resized_depth = cv2.resize(depth_crop, output_size, interpolation=cv2.INTER_NEAREST)
if seg is not None:
seg_crop[top_offset:bottom_offset, left_offset:right_offset] = seg[top:bottom, left:right]
resized_seg = cv2.resize(seg_crop, output_size, interpolation=cv2.INTER_NEAREST)
final_seg = resized_seg.copy()
mask_rgb = resized_rgb != 0
mask_depth = resized_depth != 0
resized_depth = resized_depth.astype(np.uint16)
final_rgb = resized_rgb * mask_rgb
final_depth = resized_depth * mask_depth
if seg is not None:
return final_rgb, final_depth, final_seg
else:
return final_rgb, final_depth
def normalize_rotation_matrix(R):
R[:,0] = R[:,0]/np.linalg.norm(R[:,0])
R[:,1] = R[:,1]/np.linalg.norm(R[:,1])
R[:,2] = R[:,2]/np.linalg.norm(R[:,2])
return R
def random_gaussian_magnitude(max_T, max_R):
direction_T = random_direction()
while 1:
magn_T = np.random.normal(0,max_T)
if abs(magn_T)<=max_T:
break
T = direction_T*magn_T
direction_R = random_direction()
direction_R = direction_R/np.linalg.norm(direction_R)
while 1:
magn_R = np.random.normal(0,max_R) #degree
if abs(magn_R)<=max_R:
break
rod = direction_R*magn_R/180.0*np.pi
R = cv2.Rodrigues(rod)[0].reshape(3,3).copy()
pose = np.eye(4)
pose[:3,:3] = R
pose[:3,3] = T.copy()
return pose
def random_direction():
def sph2cart(phi, theta, r):
points = np.zeros(3)
points[0] = r * math.sin(phi) * math.cos(theta)
points[1] = r * math.sin(phi) * math.sin(theta)
points[2] = r * math.cos(phi)
return points
theta = random.uniform(0, 1) * math.pi * 2
phi = math.acos((2 * (random.uniform(0, 1))) - 1)
return sph2cart(phi, theta, 1)
def get_random_view_matrix(min_radius,max_radius):
eye = random_direction()
distance = random.uniform(0, 1) * (max_radius - min_radius) + min_radius
eye *= distance
def gl_look_at(eye, center, up):
E = eye
C = center
U = up
F = C - E
F /= np.linalg.norm(F)
S = np.cross(F, U)
S /= np.linalg.norm(S)
U = np.cross(S, F)
mat = np.eye(4, dtype=np.float32)
mat[0, :] = np.hstack([S, 0])
mat[1, :] = np.hstack([U, 0])
mat[2, :] = np.hstack([-F, 0])
mat[0, 3] = -np.dot(S, E)
mat[1, 3] = -np.dot(U, E)
mat[2, 3] = np.dot(F, E)
return mat
view = gl_look_at(eye, np.zeros(3), np.array([0, 0, 1]))
angle = random.uniform(0, 1) * math.pi * 2
cosa = math.cos(angle)
sina = math.sin(angle)
rotate_around_z = np.eye(4)
rotate_around_z[0, 0] = cosa
rotate_around_z[1, 0] = sina
rotate_around_z[0, 1] = -sina
rotate_around_z[1, 1] = cosa
cam_in_object = np.linalg.inv(view).dot(rotate_around_z)
view = np.linalg.inv(cam_in_object)
return view
def cam_K_from_dict(cam_cfg):
return np.array([[cam_cfg["focalX"],0,cam_cfg['centerX']],
[0,cam_cfg['focalY'],cam_cfg['centerY']],
[0,0,1]])
def compute_obj_max_width(model_cloud):
return compute_cloud_diameter(model_cloud) * 1000
def fill_depth(depth,max_depth=2.0,extrapolate=False,blur_type='bilateral'):
'''
@depth: meters
'''
depth = depth.astype(np.float32)
custom_kernel = np.array(
[
[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
], dtype=np.uint8)
valid_pixels = (depth > 0.1)
depth[valid_pixels] = max_depth - depth[valid_pixels]
depth = cv2.dilate(depth, custom_kernel)
# Hole closing
FULL_KERNEL_3 = np.ones((3, 3), np.uint8)
FULL_KERNEL_5 = np.ones((5, 5), np.uint8)
FULL_KERNEL_7 = np.ones((7, 7), np.uint8)
FULL_KERNEL_9 = np.ones((9, 9), np.uint8)
FULL_KERNEL_31 = np.ones((31, 31), np.uint8)
depth = cv2.morphologyEx(depth, cv2.MORPH_CLOSE, FULL_KERNEL_5)
# Fill empty spaces with dilated values
empty_pixels = (depth < 0.1)
dilated = cv2.dilate(depth, FULL_KERNEL_7)
depth[empty_pixels] = dilated[empty_pixels]
# Extend highest pixel to top of image
if extrapolate:
top_row_pixels = np.argmax(depth > 0.1, axis=0)
top_pixel_values = depth[top_row_pixels, range(depth.shape[1])]
for pixel_col_idx in range(depth.shape[1]):
depth[0:top_row_pixels[pixel_col_idx], pixel_col_idx] = top_pixel_values[pixel_col_idx]
# Large Fill
empty_pixels = depth < 0.1
dilated = cv2.dilate(depth, FULL_KERNEL_31)
depth[empty_pixels] = dilated[empty_pixels]
# Median blur
depth = cv2.medianBlur(depth, 5)
# Bilateral or Gaussian blur
if blur_type == 'bilateral':
# Bilateral blur
depth = cv2.bilateralFilter(depth, 5, 1.5, 2.0)
elif blur_type == 'gaussian':
# Gaussian blur
valid_pixels = (depth > 0.1)
blurred = cv2.GaussianBlur(depth, (5, 5), 0)
depth[valid_pixels] = blurred[valid_pixels]
# Invert
valid_pixels = (depth > 0.1)
depth[valid_pixels] = max_depth - depth[valid_pixels]
return depth
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img):
for t in self.transforms:
img = t(img)
return img