- StatsRepo()
- .add(), .show_results(), .restore(), .save()
- _get_learner()
- higher level function to create learner, inclusing cupping of pre-trained model
- model_cutter(): used for custom layer clipping of pre-trained model
- lr_find()
- lrfinder + plots
- Learner.Recorder.plot2(): returns smoothed plot with suggestions
- _train()
- supports both one-cycle and flat annealing
- Learner.svalidate()
- silently validate -- compute validation results without updating Jupyter cell output
- get_best_stats()
- Returns best result from recorder history
- get_val_stats()
- Returns final result from recorder history
- Thresholded metrics for multi-label classification:
- error_02(), accuracy_02(), error_05(), accuracy_05()
- mishify()
- modifies resnet and xresnet models to use MISH activation function in place of RELU.
- note: Includes version of MISH with application (mish source: https://github.com/lessw2020/mish)
- analyze_interp()
- Summary results for nterpreter including plots
- combine_predictions()
- Generates composite prediction based on multiple interpreters
- plot_confusion_matrix()
- plots confusion matrix with clean-up of distplay boundaries
- plot_confusion_matrix_thresh()
- plots confusion matrix after thresholding values
- threshold_confusion_matrix(): computes confusion matric using threshold
- interpretation_summary()
- Outputs various stats (summary, cm, threshold analysis)
- get_accuracy()
- Computes accuract stat for interpreter
- analyze_confidence()
- Plots confidence histograms
- accuracy_vs_threshold()
- Plots accuract vs threshold value
- show_incremental_accuracy()
- TBS
- analyze_low_confidence()
- TBS
- verify_gpu()
- checks GPU status
- reset_seeds()
- initialized all random seeds to known value
- _get_interp()
- ISSUE: Code may be too implementation specific