diff --git a/tests/test_data_handling.py b/tests/test_data_handling.py index bf31bf3..d5ea93e 100644 --- a/tests/test_data_handling.py +++ b/tests/test_data_handling.py @@ -4,6 +4,7 @@ """ import filecmp +import logging import os from shutil import copyfile @@ -85,14 +86,18 @@ def test_get_turbine_types(self, capsys): with pytest.raises(ValueError, match=msg): get_turbine_types("wrong") - def test_store_turbine_data_from_oedb(self): + def test_store_turbine_data_from_oedb(self, caplog): """Test `store_turbine_data_from_oedb` function.""" t = {} for fn in os.listdir(self.orig_path): t[fn] = os.path.getmtime(os.path.join(self.orig_path, fn)) - store_turbine_data_from_oedb() + with caplog.at_level(logging.WARNING): + store_turbine_data_from_oedb() for fn in os.listdir(self.orig_path): assert t[fn] < os.path.getmtime(os.path.join(self.orig_path, fn)) + assert "The turbine library data contains too many faulty" not in caplog.text + assert "No cp-curve but has_cp_curve=True" not in caplog.text + assert "No power curve but has_power_curve=True" not in caplog.text def test_wrong_url_load_turbine_data(self): """Load turbine data from oedb with a wrong schema.""" diff --git a/windpowerlib/data.py b/windpowerlib/data.py index 528adf7..9d9cc1f 100644 --- a/windpowerlib/data.py +++ b/windpowerlib/data.py @@ -187,46 +187,84 @@ def store_turbine_data_from_oedb( # get all power (coefficient) curves and save them to file for curve_type in ["power_curve", "power_coefficient_curve"]: + broken_turbine_data = [] curves_df = pd.DataFrame(columns=["wind_speed"]) for index in turbine_data.index: if ( turbine_data["{}_wind_speeds".format(curve_type)][index] and turbine_data["{}_values".format(curve_type)][index] ): - df = ( - pd.DataFrame( - data=[ - eval( - turbine_data[ - "{}_wind_speeds".format(curve_type) - ][index] - ), - eval( - turbine_data["{}_values".format(curve_type)][ - index - ] - ), - ] - ) - .transpose() - .rename( - columns={ - 0: "wind_speed", - 1: turbine_data["turbine_type"][index], - } + try: + df = ( + pd.DataFrame( + data=[ + eval( + turbine_data[ + "{}_wind_speeds".format(curve_type) + ][index] + ), + eval( + turbine_data["{}_values".format(curve_type)][ + index + ] + ), + ] + ) + .transpose() + .rename( + columns={ + 0: "wind_speed", + 1: turbine_data["turbine_type"][index], + } + ) ) + if not df.wind_speed.duplicated().any(): + curves_df = pd.merge( + left=curves_df, right=df, how="outer", on="wind_speed" + ) + except: + broken_turbine_data.append(turbine_data.loc[index, "turbine_type"]) + + # warning in case of broken turbine data + if len(broken_turbine_data) > 0: + issue_link = ("https://github.com/OpenEnergyPlatform/data-preprocessing" + "/issues/28") + # in case only some data is faulty, only give out warning + if len(broken_turbine_data) < 0.2 * len(turbine_data): + logging.warning( + f"The turbine library data contains faulty {curve_type}s. The " + f"{curve_type} data can therefore not be loaded for the following " + f"turbines: {broken_turbine_data}. " + f"Please report this in the following issue, in case it hasn't " + f"already been reported: {issue_link}" ) - if not df.wind_speed.duplicated().any(): - curves_df = pd.merge( - left=curves_df, right=df, how="outer", on="wind_speed" - ) - curves_df = curves_df.set_index("wind_speed").sort_index().transpose() - # power curve values in W - if curve_type == "power_curve": - curves_df *= 1000 - curves_df.index.name = "turbine_type" - curves_df.sort_index(inplace=True) - curves_df.to_csv(filename.format("{}s".format(curve_type))) + save_turbine_data = True + # set has_power_(coefficient)_curve to False for faulty turbines + for turb in broken_turbine_data: + ind = turbine_data[turbine_data.turbine_type == turb].index[0] + col = ("has_power_curve" if curve_type == "power_curve" + else "has_cp_curve") + turbine_data.at[ind, col] = False + # in case most data is faulty, do not store downloaded data + else: + logging.warning( + f"The turbine library data contains too many faulty {curve_type}s," + f"wherefore {curve_type} data is not loaded from the oedb. " + f"Please report this in the following issue, in case it hasn't " + f"already been reported: {issue_link}" + ) + save_turbine_data = False + else: + save_turbine_data = True + + if save_turbine_data: + curves_df = curves_df.set_index("wind_speed").sort_index().transpose() + # power curve values in W + if curve_type == "power_curve": + curves_df *= 1000 + curves_df.index.name = "turbine_type" + curves_df.sort_index(inplace=True) + curves_df.to_csv(filename.format("{}s".format(curve_type))) # get turbine data and save to file (excl. curves) turbine_data_df = turbine_data.drop(