-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnorm_para.py
executable file
·63 lines (55 loc) · 2.64 KB
/
norm_para.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 23 14:27:46 2019
@author: winston
"""
import pandas as pd
import numpy as np
from scipy.io import loadmat, savemat
from utils import CombineListToMatrix
if __name__=='__main__':
# Get Label-Table & Data-Feature
label_table = pd.read_csv('/media/winston/UTD-MSP/Speech_Datasets/MSP-PODCAST-Publish-1.6/Labels/labels_concensus.csv')
data_root = '/media/winston/UTD-MSP/Speech_Datasets/MSP-PODCAST-Publish-1.6/Features/OpenSmile_lld_IS13ComParE/feat_mat/'
# Get Desired Attributes from Label-Table
whole_fnames = (label_table['FileName'].values).astype('str')
split_set = (label_table['Split_Set'].values).astype('str')
emo_act = label_table['EmoAct'].values
emo_dom = label_table['EmoDom'].values
emo_val = label_table['EmoVal'].values
# Acoustic-Feature Normalization based on Training Set
Train_Data = []
Train_Label_act = []
Train_Label_dom = []
Train_Label_val = []
for i in range(len(whole_fnames)):
# Calculate Mean & Std per training utterance
if split_set[i]=='Train':
data = loadmat(data_root + whole_fnames[i].replace('.wav','.mat'))['Audio_data']
data = data[:,1:] # remove time-info
Train_Data.append(data)
Train_Label_act.append(emo_act[i])
Train_Label_dom.append(emo_dom[i])
Train_Label_val.append(emo_val[i])
Train_Data = CombineListToMatrix(Train_Data)
Train_Label_act = np.array(Train_Label_act)
Train_Label_dom = np.array(Train_Label_dom)
Train_Label_val = np.array(Train_Label_val)
# Feature Normalization Parameters
Feat_mean_All = np.mean(Train_Data,axis=0)
Feat_std_All = np.std(Train_Data,axis=0)
savemat('./NormTerm/feat_norm_means.mat', {'normal_para':Feat_mean_All})
savemat('./NormTerm/feat_norm_stds.mat', {'normal_para':Feat_std_All})
Label_mean_Act = np.mean(Train_Label_act)
Label_std_Act = np.std(Train_Label_act)
savemat('./NormTerm/act_norm_means.mat', {'normal_para':Label_mean_Act})
savemat('./NormTerm/act_norm_stds.mat', {'normal_para':Label_std_Act})
Label_mean_Dom = np.mean(Train_Label_dom)
Label_std_Dom = np.std(Train_Label_dom)
savemat('./NormTerm/dom_norm_means.mat', {'normal_para':Label_mean_Dom})
savemat('./NormTerm/dom_norm_stds.mat', {'normal_para':Label_std_Dom})
Label_mean_Val = np.mean(Train_Label_val)
Label_std_Val = np.std(Train_Label_val)
savemat('./NormTerm/val_norm_means.mat', {'normal_para':Label_mean_Val})
savemat('./NormTerm/val_norm_stds.mat', {'normal_para':Label_std_Val})