-
Notifications
You must be signed in to change notification settings - Fork 0
/
pre_grey_rgb2D.py
364 lines (322 loc) · 11.3 KB
/
pre_grey_rgb2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# import packages
import numpy as np
import os
from glob import glob
join = os.path.join
from skimage import transform, io, segmentation
from tqdm import tqdm
# import torch
# from segment_anything import sam_model_registry
# from segment_anything.utils.transforms import ResizeLongestSide
import argparse
# set up the parser
parser = argparse.ArgumentParser(description="preprocess grey and RGB images")
# add arguments to the parser
parser.add_argument(
"-i",
"--img_path",
type=str,
default="data/MedSAMDemo_2D/train/images",
help="path to the images",
)
parser.add_argument(
"-gt",
"--gt_path",
type=str,
default="data/MedSAMDemo_2D/train/labels",
help="path to the ground truth (gt)",
)
parser.add_argument(
"--csv",
type=str,
default=None,
help="path to the csv file",
)
parser.add_argument(
"-o",
"--npz_path",
type=str,
default="data/demo2D",
help="path to save the npz files",
)
parser.add_argument(
"--data_name",
type=str,
default="demo2d",
help="dataset name; used to name the final npz file, e.g., demo2d.npz",
)
parser.add_argument("--image_size", type=int, default=256, help="image size")
parser.add_argument(
"--img_name_suffix", type=str, default=".png", help="image name suffix"
)
parser.add_argument("--label_id", type=int, default=255, help="label id")
parser.add_argument("--model_type", type=str, default="vit_b", help="model type")
parser.add_argument(
"--checkpoint",
type=str,
default="work_dir/SAM/sam_vit_b_01ec64.pth",
help="checkpoint",
)
parser.add_argument("--device", type=str, default="cuda:0", help="device")
parser.add_argument("--seed", type=int, default=2023, help="random seed")
# parse the arguments
args = parser.parse_args()
# convert 2d grey or rgb images to npz file
imgs = []
gts = []
# img_embeddings = []
# set up the model
# get the model from sam_model_registry using the model_type argument
# and load it with checkpoint argument
# download save the SAM checkpoint.
# [https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth](VIT-B SAM model)
# sam_model = sam_model_registry[args.model_type](checkpoint=args.checkpoint).to(
# args.device
# )
# def process(gt_name: str, image_name: str):
# if image_name == None:
# # image_name = gt_name.split(".")[0] + args.img_name_suffix
# image_name = gt_name.split("_seg")[0] + args.img_name_suffix
# gt_data = io.imread(join(args.gt_path, gt_name))
# # if it is rgb, select the first channel
# if len(gt_data.shape) == 3:
# gt_data = gt_data[:, :, 0]
# assert len(gt_data.shape) == 2, "ground truth should be 2D"
# # resize ground truth image
# gt_data = transform.resize(
# gt_data == args.label_id,
# (args.image_size, args.image_size),
# order=0,
# preserve_range=True,
# mode="constant",
# )
# # convert to uint8
# gt_data = np.uint8(gt_data)
# if np.sum(gt_data) > 100: # exclude tiny objects
# """Optional binary thresholding can be added"""
# assert (
# np.max(gt_data) == 1 and np.unique(gt_data).shape[0] == 2
# ), "ground truth should be binary"
# image_data = io.imread(join(args.img_path, image_name))
# # Remove any alpha channel if present.
# if image_data.shape[-1] > 3 and len(image_data.shape) == 3:
# image_data = image_data[:, :, :3]
# # If image is grayscale, then repeat the last channel to convert to rgb
# if len(image_data.shape) == 2:
# image_data = np.repeat(image_data[:, :, None], 3, axis=-1)
# # nii preprocess start
# # lower_bound, upper_bound = np.percentile(image_data, 0.5), np.percentile(
# # image_data, 99.5
# # )
# # image_data_pre = np.clip(image_data, lower_bound, upper_bound)
# # min-max normalize and scale
# # image_data_pre = (
# # (image_data_pre - np.min(image_data_pre))
# # / (np.max(image_data_pre) - np.min(image_data_pre))
# # * 255.0
# # )
# # image_data_pre[image_data == 0] = 0
# image_data = transform.resize(
# image_data,
# (args.image_size, args.image_size),
# order=3,
# preserve_range=True,
# mode="constant",
# anti_aliasing=True,
# )
# image_data = np.uint8(image_data)
# # imgs.append(image_data)
# assert np.sum(gt_data) > 100, "ground truth should have more than 100 pixels"
# # gts.append(gt_data)
# # save imgs and gt
# img = (img - img.max()) / np.clip(img.max() - img.min(), a_min=1e-8, a_max=None)
# assert img.shape[:2] == gt.shape
# np.save(
# join(
# save_path,
# "imgs",
# prefix
# + "-"
# + str(i).zfill(5)
# + ".npy",
# ),
# img,
# )
# np.save(
# join(
# save_path,
# "gts",
# prefix
# + "-"
# + str(i).zfill(5)
# + ".npy",
# ),
# gt,
# )
# resize image to 3*1024*1024
# sam_transform = ResizeLongestSide(sam_model.image_encoder.img_size)
# resize_img = sam_transform.apply_image(image_data_pre)
# resize_img_tensor = torch.as_tensor(resize_img.transpose(2, 0, 1)).to(
# args.device
# )
# input_image = sam_model.preprocess(
# resize_img_tensor[None, :, :, :]
# ) # (1, 3, 1024, 1024)
# assert input_image.shape == (
# 1,
# 3,
# sam_model.image_encoder.img_size,
# sam_model.image_encoder.img_size,
# ), "input image should be resized to 1024*1024"
# pre-compute the image embedding
# with torch.no_grad():
# embedding = sam_model.image_encoder(input_image)
# img_embeddings.append(embedding.cpu().numpy()[0])
# create a directory to save the npz files
save_path = args.npz_path + "_" + args.model_type
os.makedirs(save_path, exist_ok=True)
## For point prompt training.
prefix = 'endovis17'
os.makedirs(join(save_path, "gts"), exist_ok=True)
os.makedirs(join(save_path, "imgs"), exist_ok=True)
if args.csv != None:
# if data is presented in csv format
# columns must be named image_filename and mask_filename respectively
try:
os.path.exists(args.csv)
except FileNotFoundError as e:
print(f"File {args.csv} not found!!")
import pandas as pd
df = pd.read_csv(args.csv)
bar = tqdm(df.iterrows(), total=len(df))
for idx, row in bar:
print('Dont use csv')
# process(row.mask_filename, row.image_filename)
else:
# get all the names of the images in the ground truth folder
names = sorted(os.listdir(args.gt_path))
# print the number of images found in the ground truth folder
print("image number:", len(names))
idx_npy = 0
for gt_name in tqdm(names):
gt_data = io.imread(join(args.gt_path, gt_name))
# if it is rgb, select the first channel
if len(gt_data.shape) == 3:
gt_data = gt_data[:, :, 0]
assert len(gt_data.shape) == 2, "ground truth should be 2D"
# resize ground truth image
gt_data = transform.resize(
gt_data == args.label_id,
(args.image_size, args.image_size),
order=0,
preserve_range=True,
mode="constant",
)
# convert to uint8
gt_data = np.uint8(gt_data)
if np.sum(gt_data) <= 100:
continue
else:
"""Optional binary thresholding can be added"""
assert (
np.max(gt_data) == 1 and np.unique(gt_data).shape[0] == 2
), "ground truth should be binary"
image_data = io.imread(join(args.img_path, gt_name))
# Remove any alpha channel if present.
if image_data.shape[-1] > 3 and len(image_data.shape) == 3:
image_data = image_data[:, :, :3]
# If image is grayscale, then repeat the last channel to convert to rgb
if len(image_data.shape) == 2:
image_data = np.repeat(image_data[:, :, None], 3, axis=-1)
image_data = transform.resize(
image_data,
(args.image_size, args.image_size),
order=3,
preserve_range=True,
mode="constant",
anti_aliasing=True,
)
image_data = np.uint8(image_data)
image_data = (image_data - image_data.max()) / np.clip(image_data.max() - image_data.min(), a_min=1e-8, a_max=None)
assert gt_data.shape[:2] == gt_data.shape
np.save(
join(
save_path,
"imgs",
prefix
+ "-"
+ str(idx_npy).zfill(5)
+ ".npy",
),
image_data,
)
np.save(
join(
save_path,
"gts",
prefix
+ "-"
+ str(idx_npy).zfill(5)
+ ".npy",
),
gt_data,
)
idx_npy += 1
# print(f"idx: {idx_npy}")
# process(gt_name, gt_name) # process(gt_name, None)
breakpoint()
print("Num. of images:", len(idx_npy))
# save all 2D images as one npz file: ori_imgs, ori_gts, img_embeddings
# stack the list to array
# print("Num. of images:", len(imgs))
# if len(imgs) > 1:
# imgs = np.stack(imgs, axis=0) # (n, 256, 256, 3)
# gts = np.stack(gts, axis=0) # (n, 256, 256)
# img_embeddings = np.stack(img_embeddings, axis=0) # (n, 1, 256, 64, 64)
# np.savez_compressed(
# join(save_path, args.data_name + ".npz"),
# imgs=imgs,
# gts=gts,
# img_embeddings=img_embeddings,
# )
# # save an example image for sanity check
# idx = np.random.randint(imgs.shape[0])
# img_idx = imgs[idx, :, :, :]
# gt_idx = gts[idx, :, :]
# bd = segmentation.find_boundaries(gt_idx, mode="inner")
# img_idx[bd, :] = [255, 0, 0]
# io.imsave(save_path + ".png", img_idx, check_contrast=False)
# else:
# print(
# "Do not find image and ground-truth pairs. Please check your dataset and argument settings"
# )
# if len(imgs) > 1:
# for i, (img, gt) in enumerate(zip(imgs, gts)):
# img = (img - img.max()) / np.clip(img.max() - img.min(), a_min=1e-8, a_max=None)
# assert img.shape[:2] == gt.shape
# np.save(
# join(
# save_path,
# "imgs",
# prefix
# + "-"
# + str(i).zfill(5)
# + ".npy",
# ),
# img,
# )
# np.save(
# join(
# save_path,
# "gts",
# prefix
# + "-"
# + str(i).zfill(5)
# + ".npy",
# ),
# gt,
# )
# else:
# print(
# "Do not find image and ground-truth pairs. Please check your dataset and argument settings"
# )