forked from facebookresearch/detectron2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
collect_env.py
246 lines (205 loc) · 8.33 KB
/
collect_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) Facebook, Inc. and its affiliates.
import importlib
import numpy as np
import os
import re
import subprocess
import sys
from collections import defaultdict
import PIL
import torch
import torchvision
from tabulate import tabulate
__all__ = ["collect_env_info"]
def collect_torch_env():
try:
import torch.__config__
return torch.__config__.show()
except ImportError:
# compatible with older versions of pytorch
from torch.utils.collect_env import get_pretty_env_info
return get_pretty_env_info()
def get_env_module():
var_name = "DETECTRON2_ENV_MODULE"
return var_name, os.environ.get(var_name, "<not set>")
def detect_compute_compatibility(CUDA_HOME, so_file):
try:
cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump")
if os.path.isfile(cuobjdump):
output = subprocess.check_output(
"'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True
)
output = output.decode("utf-8").strip().split("\n")
arch = []
for line in output:
line = re.findall(r"\.sm_([0-9]*)\.", line)[0]
arch.append(".".join(line))
arch = sorted(set(arch))
return ", ".join(arch)
else:
return so_file + "; cannot find cuobjdump"
except Exception:
# unhandled failure
return so_file
def collect_env_info():
has_gpu = torch.cuda.is_available() # true for both CUDA & ROCM
torch_version = torch.__version__
# NOTE that CUDA_HOME/ROCM_HOME could be None even when CUDA runtime libs are functional
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME
has_rocm = False
if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None):
has_rocm = True
has_cuda = has_gpu and (not has_rocm)
data = []
data.append(("sys.platform", sys.platform)) # check-template.yml depends on it
data.append(("Python", sys.version.replace("\n", "")))
data.append(("numpy", np.__version__))
try:
import detectron2 # noqa
data.append(
("detectron2", detectron2.__version__ + " @" + os.path.dirname(detectron2.__file__))
)
except ImportError:
data.append(("detectron2", "failed to import"))
except AttributeError:
data.append(("detectron2", "imported a wrong installation"))
try:
import detectron2._C as _C
except ImportError as e:
data.append(("detectron2._C", f"not built correctly: {e}"))
# print system compilers when extension fails to build
if sys.platform != "win32": # don't know what to do for windows
try:
# this is how torch/utils/cpp_extensions.py choose compiler
cxx = os.environ.get("CXX", "c++")
cxx = subprocess.check_output("'{}' --version".format(cxx), shell=True)
cxx = cxx.decode("utf-8").strip().split("\n")[0]
except subprocess.SubprocessError:
cxx = "Not found"
data.append(("Compiler ($CXX)", cxx))
if has_cuda and CUDA_HOME is not None:
try:
nvcc = os.path.join(CUDA_HOME, "bin", "nvcc")
nvcc = subprocess.check_output("'{}' -V".format(nvcc), shell=True)
nvcc = nvcc.decode("utf-8").strip().split("\n")[-1]
except subprocess.SubprocessError:
nvcc = "Not found"
data.append(("CUDA compiler", nvcc))
if has_cuda and sys.platform != "win32":
try:
so_file = importlib.util.find_spec("detectron2._C").origin
except (ImportError, AttributeError):
pass
else:
data.append(
("detectron2 arch flags", detect_compute_compatibility(CUDA_HOME, so_file))
)
else:
# print compilers that are used to build extension
data.append(("Compiler", _C.get_compiler_version()))
data.append(("CUDA compiler", _C.get_cuda_version())) # cuda or hip
if has_cuda and getattr(_C, "has_cuda", lambda: True)():
data.append(
("detectron2 arch flags", detect_compute_compatibility(CUDA_HOME, _C.__file__))
)
data.append(get_env_module())
data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__)))
data.append(("PyTorch debug build", torch.version.debug))
try:
data.append(("torch._C._GLIBCXX_USE_CXX11_ABI", torch._C._GLIBCXX_USE_CXX11_ABI))
except Exception:
pass
if not has_gpu:
has_gpu_text = "No: torch.cuda.is_available() == False"
else:
has_gpu_text = "Yes"
data.append(("GPU available", has_gpu_text))
if has_gpu:
devices = defaultdict(list)
for k in range(torch.cuda.device_count()):
cap = ".".join((str(x) for x in torch.cuda.get_device_capability(k)))
name = torch.cuda.get_device_name(k) + f" (arch={cap})"
devices[name].append(str(k))
for name, devids in devices.items():
data.append(("GPU " + ",".join(devids), name))
if has_rocm:
msg = " - invalid!" if not (ROCM_HOME and os.path.isdir(ROCM_HOME)) else ""
data.append(("ROCM_HOME", str(ROCM_HOME) + msg))
else:
try:
from torch.utils.collect_env import get_nvidia_driver_version, run as _run
data.append(("Driver version", get_nvidia_driver_version(_run)))
except Exception:
pass
msg = " - invalid!" if not (CUDA_HOME and os.path.isdir(CUDA_HOME)) else ""
data.append(("CUDA_HOME", str(CUDA_HOME) + msg))
cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
if cuda_arch_list:
data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list))
data.append(("Pillow", PIL.__version__))
try:
data.append(
(
"torchvision",
str(torchvision.__version__) + " @" + os.path.dirname(torchvision.__file__),
)
)
if has_cuda:
try:
torchvision_C = importlib.util.find_spec("torchvision._C").origin
msg = detect_compute_compatibility(CUDA_HOME, torchvision_C)
data.append(("torchvision arch flags", msg))
except (ImportError, AttributeError):
data.append(("torchvision._C", "Not found"))
except AttributeError:
data.append(("torchvision", "unknown"))
try:
import fvcore
data.append(("fvcore", fvcore.__version__))
except (ImportError, AttributeError):
pass
try:
import iopath
data.append(("iopath", iopath.__version__))
except (ImportError, AttributeError):
pass
try:
import cv2
data.append(("cv2", cv2.__version__))
except (ImportError, AttributeError):
data.append(("cv2", "Not found"))
env_str = tabulate(data) + "\n"
env_str += collect_torch_env()
return env_str
def test_nccl_ops():
num_gpu = torch.cuda.device_count()
if os.access("/tmp", os.W_OK):
import torch.multiprocessing as mp
dist_url = "file:///tmp/nccl_tmp_file"
print("Testing NCCL connectivity ... this should not hang.")
mp.spawn(_test_nccl_worker, nprocs=num_gpu, args=(num_gpu, dist_url), daemon=False)
print("NCCL succeeded.")
def _test_nccl_worker(rank, num_gpu, dist_url):
import torch.distributed as dist
dist.init_process_group(backend="NCCL", init_method=dist_url, rank=rank, world_size=num_gpu)
dist.barrier(device_ids=[rank])
if __name__ == "__main__":
try:
from detectron2.utils.collect_env import collect_env_info as f
print(f())
except ImportError:
print(collect_env_info())
if torch.cuda.is_available():
num_gpu = torch.cuda.device_count()
for k in range(num_gpu):
device = f"cuda:{k}"
try:
x = torch.tensor([1, 2.0], dtype=torch.float32)
x = x.to(device)
except Exception as e:
print(
f"Unable to copy tensor to device={device}: {e}. "
"Your CUDA environment is broken."
)
if num_gpu > 1:
test_nccl_ops()