diff --git a/README.md b/README.md index b593578..a760cc3 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,7 @@ #### 主要内容 -- 🚀 开源Llama-3-Chinese基座模型和Llama-3-Chinese-Instruct指令模型 +- 🚀 开源Llama-3-Chinese基座模型和Llama-3-Chinese-Instruct指令模型(v1, v2, v3) - 🚀 开源了预训练脚本、指令精调脚本,用户可根据需要进一步训练或微调模型 - 🚀 开源了alpaca_zh_51k, stem_zh_instruction, ruozhiba_gpt4 (4o/4T) 指令精调数据 - 🚀 提供了利用个人电脑CPU/GPU快速在本地进行大模型量化和部署的教程 @@ -29,7 +29,9 @@ ## 新闻 -**[2024/05/08] 发布Llama-3-Chinese-8B-Instruct-v2版指令模型,直接采用500万条指令数据在 [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) 上进行精调。详情查看:[📚v2.0版本发布日志](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v2.0)** +**[2024/05/30] 发布Llama-3-Chinese-8B-Instruct-v3版指令模型,相比v1/v2在下游任务上获得显著提升。详情查看:[📚v3.0版本发布日志](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v3.0)** + +[2024/05/08] 发布Llama-3-Chinese-8B-Instruct-v2版指令模型,直接采用500万条指令数据在 [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) 上进行精调。详情查看:[📚v2.0版本发布日志](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v2.0) [2024/05/07] 添加预训练脚本、指令精调脚本。详情查看:[📚v1.1版本发布日志](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v1.1) @@ -86,18 +88,35 @@ | 模型大小 | 8B | 8B | | 训练类型 | Causal-LM (CLM) | 指令精调 | | 训练方式 | LoRA + 全量emb/lm-head | LoRA + 全量emb/lm-head | -| 初始化模型 | [原版Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | v1: Llama-3-Chinese-8B
v2: [原版Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | +| 初始化模型 | [原版Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | v1: Llama-3-Chinese-8B
v2: [原版Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
v3: mix of inst/inst-v2/inst-meta | | 训练语料 | 无标注通用语料(约120GB) | 有标注指令数据(约500万条) | | 词表大小 | 原版词表(128,256) | 原版词表(128,256) | | 支持上下文长度 | 8K | 8K | | 输入模板 | 不需要 | 需要套用Llama-3-Instruct模板 | | 适用场景 | 文本续写:给定上文,让模型生成下文 | 指令理解:问答、写作、聊天、交互等 | +以下是Instruct版本之间的对比,**如无明确偏好,请优先使用Instruct-v3版本。** + +| 对比项 | Instruct-v1 | Instruct-v2 | Instruct-v3 | +| :-------------------- | :----------------------------------------------------: | :----------------------------------------------------------: | :-------------------: | +| 发布时间 | 2024/4/30 | 2024/5/8 | 2024/5/30 | +| 基模型 | [原版Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [原版Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | (见训练方式) | +| 训练方式 | 第一阶段:120G中文语料预训练
第二阶段:500万指令数据精调 | 直接使用500万指令数据精调 | 使用inst-v1, inst-v2, inst-meta进行模型融合,并经过少量指令数据(~5K条)的精调得到 | +| 中文能力[1] | 49.3 / 51.5 | 51.6 / 51.6 | **55.2 / 54.8** 👍🏻 | +| 英文能力[1] | 63.21 | 66.68 | **66.81** 👍🏻 | +| 长文本能力[1] | 29.6 | **46.4** 👍🏻 | 40.5 | +| 大模型竞技场胜率 / Elo评分[2] | 49.4% / 1430 | 66.1% / 1559 | **83.6% / 1627** 👍🏻 | + +> [!NOTE] +> [1] 中文能力效果来自C-Eval (valid);英文能力效果来自Open LLM Leaderboard (avg);长文本能力来自LongBench (avg);详细效果请参阅[💯模型效果](#模型效果)一节。 +> [2] 大模型竞技场效果获取时间:2024/5/30,仅供参考。 + ### 下载地址 | 模型名称 | 完整版 | LoRA版 | GGUF版 | | :------------------------ | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | +| **Llama-3-Chinese-8B-Instruct-v3**
(指令模型) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3) | N/A | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3-gguf) | | **Llama-3-Chinese-8B-Instruct-v2**
(指令模型) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2-lora)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-lora)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-lora) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-gguf) | | **Llama-3-Chinese-8B-Instruct**
(指令模型) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-lora)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-lora)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-lora) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-gguf) | | **Llama-3-Chinese-8B**
(基座模型) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-lora)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-lora)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-lora) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-gguf) | @@ -110,7 +129,7 @@ - v2基模型:原版[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - **GGUF模型**:[llama.cpp](https://github.com/ggerganov/llama.cpp)推出的量化格式,适配ollama等常见推理工具,推荐只需要做推理部署的用户下载;模型名后缀为`-im`表示使用了importance matrix进行量化,通常具有更低的PPL,建议使用(用法与常规版相同) > [!NOTE] -> 若无法访问HF,可考虑一些镜像站点(如[hf-mirror.com](hf-mirror.com)),具体方法请自行查找解决。 +> 若无法访问HF,可考虑一些镜像站点(如hf-mirror.com),具体方法请自行查找解决。 ## 推理与部署 @@ -145,6 +164,7 @@ | Models | Valid (0-shot) | Valid (5-shot) | Test (0-shot) | Test (5-shot) | | ------------------------ | :-----------: | :-----------: | :-----------: | :-----------: | +| **Llama-3-Chinese-8B-Instruct-v3** | 55.2 | 54.8 | 52.1 | 52.4 | | **Llama-3-Chinese-8B-Instruct-v2** | 51.6 | 51.6 | 49.7 | 49.8 | | **Llama-3-Chinese-8B-Instruct** | 49.3 | 51.5 | 48.3 | 49.4 | | **Llama-3-Chinese-8B** | 47.0 | 50.5 | 46.1 | 49.0 | @@ -161,6 +181,7 @@ | Models | Test (0-shot) | Test (5-shot) | | ------------------------ | :-----------: | :-----------: | +| **Llama-3-Chinese-8B-Instruct-v3** | 54.4 | 54.8 | | **Llama-3-Chinese-8B-Instruct-v2** | 51.8 | 52.4 | | **Llama-3-Chinese-8B-Instruct** | 49.7 | 51.5 | | **Llama-3-Chinese-8B** | 48.0 | 50.9 | @@ -177,6 +198,7 @@ | Models | Valid (0-shot) | Valid (5-shot) | Test (0-shot) | Test (5-shot) | | ------------------------ | :-----------: | :-----------: | :-----------: | :-----------: | +| **Llama-3-Chinese-8B-Instruct-v3** | 64.7 | 65.0 | 64.8 | 65.9 | | **Llama-3-Chinese-8B-Instruct-v2** | 62.1 | 63.9 | 62.6 | 63.7 | | **Llama-3-Chinese-8B-Instruct** | 60.1 | 61.3 | 59.8 | 61.8 | | **Llama-3-Chinese-8B** | 55.5 | 58.5 | 57.3 | 61.1 | @@ -193,6 +215,7 @@ | Models | 单文档QA | 多文档QA | 摘要 | FS学习 | 代码 | 合成 | 平均 | | ------------------------------------------------------------ | :------: | :------: | :--: | :----: | :--: | :--: | :--: | +| **Llama-3-Chinese-8B-Instruct-v3** | 20.3 | 28.8 | 24.5 | 28.1 | 59.4 | 91.9 | 40.5 | | **Llama-3-Chinese-8B-Instruct-v2** | 57.3 | 27.1 | 13.9 | 30.3 | 60.6 | 89.5 | 46.4 | | **Llama-3-Chinese-8B-Instruct** | 44.1 | 24.0 | 12.4 | 33.5 | 51.8 | 11.5 | 29.6 | | **Llama-3-Chinese-8B** | 16.4 | 19.3 | 4.3 | 28.7 | 14.3 | 4.6 | 14.6 | @@ -211,6 +234,7 @@ | Models | ARC | HellaS | MMLU | TQA | WinoG | GSM8K | 平均 | | ------------------------------------------------------------ | :---: | :----: | :---: | :---: | :---: | :---: | :---: | +| **Llama-3-Chinese-8B-Instruct-v3** | 63.40 | 80.51 | 67.90 | 53.57 | 76.24 | 59.21 | 66.81 | | **Llama-3-Chinese-8B-Instruct-v2** | 62.63 | 79.72 | 66.48 | 53.93 | 76.72 | 60.58 | 66.68 | | **Llama-3-Chinese-8B-Instruct** | 61.26 | 80.24 | 63.10 | 55.15 | 75.06 | 44.43 | 63.21 | | **Llama-3-Chinese-8B** | 55.88 | 79.53 | 63.70 | 41.14 | 77.03 | 37.98 | 59.21 | @@ -281,7 +305,7 @@ 问题5:为什么不对模型做全量预训练而是用LoRA? 问题6:为什么Llama-3-Chinese对话效果不好? 问题7:为什么指令模型会回复说自己是ChatGPT? -问题8:Instrcut模型的v1(原版)和v2有什么区别? +问题8:Instruct模型的v1(原版)和v2有什么区别? ``` ## 免责声明 diff --git a/README_EN.md b/README_EN.md index 60a9242..e8a518d 100644 --- a/README_EN.md +++ b/README_EN.md @@ -16,7 +16,7 @@ This project is developed based on Meta's newly released next-generation open-so #### Main Content -- 🚀 Open-source Llama-3-Chinese base model and Llama-3-Chinese-Instruct instruction model +- 🚀 Open-source Llama-3-Chinese base model and Llama-3-Chinese-Instruct instruction model (v1, v2, v3) - 🚀 Released pre-training scripts and instruction fine-tuning scripts, allowing users to further train or fine-tune the model as needed - 🚀 Released alpaca_zh_51k, stem_zh_instruction, ruozhiba_gpt4 (4o/4T) instruction data - 🚀 Provides a tutorial for quickly quantizing and deploying large models locally using a personal computer's CPU/GPU @@ -29,7 +29,9 @@ This project is developed based on Meta's newly released next-generation open-so ## News -**[2024/05/08] Release Llama-3-Chinese-8B-Instruct-v2, which is directly tuned on [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) with 5M instructions. For details, see: [📚Version 2.0 Release Log](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v2.0)** +**[2024/05/30] Release Llama-3-Chinese-8B-Instruct-v3, which has better performance on downstream tasks than v1/v2. For details, see: [📚Version 3.0 Release Log](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v3.0)** + +[2024/05/08] Release Llama-3-Chinese-8B-Instruct-v2, which is directly tuned on [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) with 5M instructions. For details, see: [📚Version 2.0 Release Log](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v2.0) [2024/05/07] Add pre-training and SFT scripts. For details, see: [📚Version 1.1 Release Log](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v1.1) @@ -86,18 +88,33 @@ Here's a comparison of the models in this project and recommended usage scenario | Model Size | 8B | 8B | | Training Type | Causal-LM (CLM) | Instruction Fine-Tuning | | Training Method | LoRA + Full emb/lm-head | LoRA + Full emb/lm-head | -| Initial Model | [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | v1: Llama-3-Chinese-8B
v2: [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | +| Initial Model | [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | v1: Llama-3-Chinese-8B
v2: [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
v3: mix of inst/inst-v2/inst-meta | | Training Corpus | Unlabeled general corpus (approx. 120GB) | Labeled instruction data (approx. 5 million entries) | | Vocabulary Size | Original vocabulary (128,256) | Original vocabulary (128,256) | | Supported Context Length | 8K | 8K | | Input Template | Not required | Requires Llama-3-Instruct template | | Applicable Scenarios | Text continuation: Given a context, let the model generate the following text | Instruction understanding: Q&A, writing, chatting, interaction, etc. | +Here is a comparison between different versions of Instruct. **Unless there is a clear preference, please prioritize using the Instruct-v3 version.** + +| Comparison Item | Instruct-v1 | Instruct-v2 | Instruct-v3 | +| :----------------------- | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | +| Release Date | 2024/4/30 | 2024/5/8 | 2024/5/30 | +| Base Model | [Original Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [Original Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | (See Training Method) | +| Training Method | First Stage: Pre-training with 120G Chinese Corpus
Second Stage: Fine-tuning with 5 million instruction data | Direct fine-tuning with 5 million instruction data | Model merging using inst-v1, inst-v2, and inst-meta, followed by fine-tuning with a small amount of instruction data | +| Chinese Proficiency | 49.3 / 51.5 | 51.6 / 51.6 | **55.2 / 54.8** 👍🏻 | +| English Proficiency | 63.21 | 66.68 | **66.81** 👍🏻 | +| Long Text Capability | 29.6 | **46.4** 👍🏻 | 40.5 | +| LLM Arena Win Rate / Elo | 49.4% / 1430 | 66.1% / 1559 | **83.6% / 1627** 👍🏻 | + +> [!NOTE] +> Chinese proficiency results are from C-Eval (valid); English proficiency results are from Open LLM Leaderboard (avg); long text capability results are from LongBench (avg). For detailed performance, please refer to the [💯 Model Performance](#模型效果) section. ### Download Links | Model Name | Full Version | LoRA Version | GGUF Version | | --------------------------------------------------- | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | +| **Llama-3-Chinese-8B-Instruct-v3**
(chat model) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3) | N/A | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3-gguf) | | **Llama-3-Chinese-8B-Instruct-v2**
(chat model) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2-lora)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-lora)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-lora) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-gguf) | | **Llama-3-Chinese-8B-Instruct**
(chat model) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-lora)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-lora)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-lora) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-gguf) | | **Llama-3-Chinese-8B**
(base model) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-lora)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-lora)
[[wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-lora) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-gguf) | @@ -146,6 +163,7 @@ To evaluate the effectiveness of the related models, this project conducted both | Models | Valid (0-shot) | Valid (5-shot) | Test (0-shot) | Test (5-shot) | | ------------------------ | :-----------: | :-----------: | :-----------: | :-----------: | +| **Llama-3-Chinese-8B-Instruct-v3** | 55.2 | 54.8 | 52.1 | 52.4 | | **Llama-3-Chinese-8B-Instruct-v2** | 51.6 | 51.6 | 49.7 | 49.8 | | **Llama-3-Chinese-8B-Instruct** | 49.3 | 51.5 | 48.3 | 49.4 | | **Llama-3-Chinese-8B** | 47.0 | 50.5 | 46.1 | 49.0 | @@ -162,6 +180,7 @@ To evaluate the effectiveness of the related models, this project conducted both | Models | Test (0-shot) | Test (5-shot) | | ------------------------ | :-----------: | :-----------: | +| **Llama-3-Chinese-8B-Instruct-v3** | 54.4 | 54.8 | | **Llama-3-Chinese-8B-Instruct-v2** | 51.8 | 52.4 | | **Llama-3-Chinese-8B-Instruct** | 49.7 | 51.5 | | **Llama-3-Chinese-8B** | 48.0 | 50.9 | @@ -178,6 +197,7 @@ To evaluate the effectiveness of the related models, this project conducted both | Models | Valid (0-shot) | Valid (5-shot) | Test (0-shot) | Test (5-shot) | | ------------------------ | :-----------: | :-----------: | :-----------: | :-----------: | +| **Llama-3-Chinese-8B-Instruct-v3** | 64.7 | 65.0 | 64.8 | 65.9 | | **Llama-3-Chinese-8B-Instruct-v2** | 62.1 | 63.9 | 62.6 | 63.7 | | **Llama-3-Chinese-8B-Instruct** | 60.1 | 61.3 | 59.8 | 61.8 | | **Llama-3-Chinese-8B** | 55.5 | 58.5 | 57.3 | 61.1 | @@ -194,6 +214,7 @@ To evaluate the effectiveness of the related models, this project conducted both | Models | Single-doc QA | Multi-doc QA | Summarization | Few-Shot Learning | Code | Synthesis | Average | | --- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | +| **Llama-3-Chinese-8B-Instruct-v3** | 20.3 | 28.8 | 24.5 | 28.1 | 59.4 | 91.9 | 40.5 | | **Llama-3-Chinese-8B-Instruct-v2** | 57.3 | 27.1 | 13.9 | 30.3 | 60.6 | 89.5 | 46.4 | | **Llama-3-Chinese-8B-Instruct** | 44.1 | 24.0 | 12.4 | 33.5 | 51.8 | 11.5 | 29.6 | | **Llama-3-Chinese-8B** | 16.4 | 19.3 | 4.3 | 28.7 | 14.3 | 4.6 | 14.6 | @@ -212,6 +233,7 @@ To evaluate the effectiveness of the related models, this project conducted both | Models | ARC | HellaS | MMLU | TQA | WinoG | GSM8K | Average | | ------------------------------------------------------------ | :---: | :----: | :---: | :---: | :---: | :---: | :-----: | +| **Llama-3-Chinese-8B-Instruct-v3** | 63.40 | 80.51 | 67.90 | 53.57 | 76.24 | 59.21 | 66.81 | | **Llama-3-Chinese-8B-Instruct-v2** | 62.63 | 79.72 | 66.48 | 53.93 | 76.72 | 60.58 | 66.68 | | **Llama-3-Chinese-8B-Instruct** | 61.26 | 80.24 | 63.10 | 55.15 | 75.06 | 44.43 | 63.21 | | **Llama-3-Chinese-8B** | 55.88 | 79.53 | 63.70 | 41.14 | 77.03 | 37.98 | 59.21 |