-
Notifications
You must be signed in to change notification settings - Fork 3
/
solver.py
383 lines (303 loc) · 16.8 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from data_utils import *
from eval_metrics import *
output_path = '/output/'
USE_GPU = True
dtype = torch.float32
if USE_GPU and torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
cnn = models.resnet101(pretrained=True).to(device).eval()
def extract_features(net, xs):
net_modules = list(net._modules.keys())[:-1]
for module_name in net_modules:
xs = net._modules[module_name](xs)
return xs
# solver of model with validation
class NetSolver(object):
def __init__(self, data, model, **kwargs):
self.data = data
self.model = model
# hyperparameters
self.lr_init = kwargs.pop('lr_init', 0.01)
self.lr_decay = kwargs.pop('lr_decay', 0.1)
self.step_size = kwargs.pop('step_size', 16)
self.batch_size = kwargs.pop('batch_size', 32)
self.print_every = kwargs.pop('print_every', 200)
self.checkpoint_name = kwargs.pop('checkpoint_name', 'im_caption')
#self.optimizer = optim.RMSprop(self.model.parameters(), lr=self.lr_init)
#self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr_init)
self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr_init,
momentum=0.9, weight_decay=0.001)
self.scheduler = StepLR(self.optimizer, step_size=self.step_size, gamma=self.lr_decay)
#self.scheduler = ReduceLROnPlateau(self.optimizer, factor=self.lr_decay, patience=20)
if isinstance(data, Flikr8k):
self.word_to_idx = data.word_to_idx
self.idx_to_word = data.idx_to_word
else:
self.word_to_idx = data['word_to_idx']
self.idx_to_word = data['idx_to_word']
self._pad = self.word_to_idx['<pad>']
self._start = self.word_to_idx['<start>']
self._end = self.word_to_idx['<end>']
self.model = self.model.to(device=device)
self._reset()
def _reset(self):
"""
Set up some book-keeping variables for optimization. Don't call this
manually.
"""
self.best_val_loss = 999.
self.best_val_bleu = 0.
self.loss_history = []
self.val_loss_history = []
self.bleu_history = []
self.val_bleu_history = []
def _save_checkpoint(self, epoch, l_val, b_val):
torch.save(self.model.state_dict(),
output_path+self.checkpoint_name+'_%.3f_%.3f_epoch_%d.pth.tar' %(l_val, b_val, epoch))
checkpoint = {
'optimizer': str(type(self.optimizer)),
'scheduler': str(type(self.scheduler)),
'lr_init': self.lr_init,
'lr_decay': self.lr_decay,
'step_size': self.step_size,
'batch_size': self.batch_size,
'epoch': epoch,
}
with open(output_path+'hyper_param_optim.json', 'w') as f:
json.dump(checkpoint, f)
def forward_net(self, features, captions):
features = features.to(device=device)
captions = captions.to(device=device)
mask = (captions[:, 1:] != self._pad).view(-1)
cap_input = captions[:, :-1]
cap_target = captions[:, 1:]
scores, hidden = self.model(features, cap_input)
loss = F.cross_entropy(torch.reshape(scores, (-1, scores.size(2)))[mask],
torch.reshape(cap_target, (-1,))[mask],
size_average=False) / features.size(0)
return loss
def train(self, epochs, loaders=None, pre_encoded=False):
# Start training for epochs
for e in range(epochs):
print('\nEpoch %d / %d:' % (e + 1, epochs))
self.model.train()
self.scheduler.step()
running_loss = 0.
if pre_encoded:
N = self.data['train_captions'].shape[0]
for t, idx in enumerate(range(0, N, self.batch_size)):
captions, features = get_batch(self.data, idx, self.batch_size)
loss = self.forward_net(features, captions)
if (t + 1) % self.print_every == 0:
print('t = %d, loss = %.4f' % (t+1, loss.item()))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
running_loss += loss.item() * features.size(0)
shuffle_data(self.data, 'train')
train_loss = running_loss / N
train_bleu = self.check_bleu_pre('train', num_samples=2000)
val_loss, val_bleu = self.check_bleu_pre('test', num_samples=2000, check_loss=True)
else:
train_loader, val_loader = loaders
for t, (ims, captions) in enumerate(train_loader):
with torch.no_grad():
ims = ims.to(device)
features = extract_features(cnn, ims).squeeze()
loss = self.forward_net(features, captions)
if (t + 1) % self.print_every == 0:
print('t = %d, loss = %.4f' % (t+1, loss.item()))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
running_loss += loss.item() * features.size(0)
N = len(train_loader.dataset)
train_loss = running_loss / N
train_bleu = self.check_bleu(train_loader, num_batches=62)
val_loss, val_bleu = self.check_bleu(val_loader, num_batches=15, check_loss=True)
#self.scheduler.step(val_loss)
# Checkpoint and record/print metrics at epoch end
self.loss_history.append(train_loss)
self.val_loss_history.append(val_loss)
self.bleu_history.append(train_bleu)
self.val_bleu_history.append(val_bleu)
# for floydhub metric graphs
print('{"metric": "BLEU.", "value": %.4f, "epoch": %d}' % (train_bleu, e+1))
print('{"metric": "Val. BLEU.", "value": %.4f, "epoch": %d}' % (val_bleu, e+1))
print('{"metric": "Loss", "value": %.4f, "epoch": %d}' % (train_loss, e+1))
print('{"metric": "Val. Loss", "value": %.4f, "epoch": %d}' % (val_loss, e+1))
if val_bleu > self.best_val_bleu:
print('updating best val bleu...')
self.best_val_bleu = val_bleu
if e > 10:
print('Saving model...')
self._save_checkpoint(e+1, val_loss, val_bleu)
elif val_loss < self.best_val_loss:
print('updating best val loss...')
self.best_val_loss = val_loss
if e > 10:
print('Saving model...')
self._save_checkpoint(e+1, val_loss, val_bleu)
print()
def sample(self, features, max_length=40, b_size=3, model_mode='nic', search_mode='greedy'):
self.model.eval()
N = features.size(0)
if model_mode == 'nic':
# prepare model input
features = features.to(device=device)
features = self.model.dropout(self.model.bn_f(features))
feeds = torch.ones((N, 1)) * self._start # initial feed, (N, 1)
feeds = feeds.to(device=device, dtype=torch.long)
im_hid = self.model.dropout(self.model.relu(self.model.proj_h(features))).unsqueeze(0)
im_state = self.model.dropout(self.model.relu(self.model.proj_c(features))).unsqueeze(0)
h0 = torch.cat((im_hid, ) * self.model.num_layers, 0) # h0, c0: (L, N, H)
#h0 = torch.zeros((self.model.num_layers, N, self.model.hidden_dim)).to(device=device)
c0 = torch.cat((im_state, ) * self.model.num_layers, 0)
#c0 = torch.zeros(h0.size()).to(device=device)
hidden = (h0, c0)
#features = self.model.dropout(self.model.relu(self.model.proj_f(features))).unsqueeze(1)
#_, hidden = self.model.rnn.lstm(features, hidden)
if search_mode == 'greedy':
captions = self._pad * np.ones((N, max_length), dtype=np.int32)
captions[:, 0] = np.ones(N) * self._start
for t in range(1, max_length):
#word_scores, hidden = self.model.rnn(word_seq=feeds, im_feat=features, # word_scores: (N, 1, V)
# hidden=hidden)
word_scores, hidden = self.model.rnn(word_seq=feeds, hidden=hidden)
feeds = torch.argmax(word_scores.squeeze(1), dim=1, keepdim=True) # feeds: (N, 1)
captions[:, t] = feeds.data.cpu().numpy().ravel()
if search_mode == 'beam':
for t in range(max_length-1):
scores, hidden = self.model.rnn(word_seq=feeds, hidden=hidden)
scores = F.softmax(scores.squeeze(), -1)
if t == 0:
scores = scores.log() # (N, V)
sorted_scores, idxes = scores.topk(b_size, dim=1) # (N, B)
candidates = idxes.unsqueeze(-1) # (N, B, 1)
feeds = torch.reshape(candidates, (-1,1)) # (N*B, 1)
V = scores.size(-1)
h, c = hidden
h = torch.reshape(torch.cat([h]*b_size, -1), (h.size(0), -1, h.size(-1))) # (L, N*B, H)
c = torch.reshape(torch.cat([c]*b_size, -1), (c.size(0), -1, c.size(-1)))
hidden = (h, c)
else:
scores = scores.log() + sorted_scores.view(-1,1) # (N*B, V)
scores = torch.reshape(scores, (N, -1)) # (N, B*V)
sorted_scores, idxes = scores.topk(b_size, dim=1) # (N, B)
prior_candidate = candidates[np.arange(N)[:,None], idxes / V] # (N, B, t)
current_candidate = (idxes % V).unsqueeze(-1) # (N, B, 1)
candidates = torch.cat([prior_candidate, current_candidate], -1) # (N, B, t+1)
feeds = torch.reshape(candidates[:,:,-1], (-1,1)) # (N*B, 1)
captions = candidates[:,0,:].squeeze().data.cpu().numpy()
captions = np.concatenate([np.ones((N,1), dtype=np.int32) * self._start, captions], 1)
if model_mode == 'attentive':
# prepare model input
D = features.size(1)
features = features.to(device=device)
features = features.transpose(1,-1)
features = torch.reshape(features, (N, -1, D))
feeds = torch.ones((N, 1)) * self._start # initial feed, (N, 1)
feeds = feeds.to(device=device, dtype=torch.long)
feat_mean = features.mean(1)
h = self.model.dropout(self.model.tanh(self.model.proj_h(feat_mean))) # (N, H)
c = self.model.dropout(self.model.tanh(self.model.proj_c(feat_mean))) # (N, H)
feat_proj = self.model.proj_f(features)
if search_mode == 'greedy':
captions = self._pad * np.ones((N, max_length), dtype=np.int32)
captions[:, 0] = np.ones(N) * self._start
for t in range(1, max_length):
context, alpha = self.model.attn(features, feat_proj, h) # (N, D), (N, L)
word_scores, h, c = self.model.rnn(feeds, context, (h,c))
feeds = torch.argmax(word_scores, dim=1, keepdim=True) # feeds: (N, 1)
captions[:, t] = feeds.data.cpu().numpy().ravel()
if search_mode == 'beam':
for t in range(max_length-1):
if t == 0:
print(t)
context, alpha = self.model.attn(features, feat_proj, h) # (N, D), (N, L)
scores, h, c = self.model.rnn(feeds, context, (h,c))
scores = F.softmax(scores, -1)
scores = scores.log() # (N, V)
sorted_scores, idxes = scores.topk(b_size, dim=1) # (N, B)
candidates = idxes.unsqueeze(-1).cpu() # (N, B, 1)
feeds = torch.reshape(candidates, (-1,1)).cuda() # (N*B, 1)
V = scores.size(-1)
h = torch.cat([h]*b_size, 0) # (N*B, H)
c = torch.cat([c]*b_size, 0)
features = torch.cat([features]*b_size, 0)
feat_proj = torch.cat([feat_proj]*b_size, 0)
else:
print(t)
context, alpha = self.model.attn(features, feat_proj, h) # (N*B, D), (N*B, L)
scores, h, c = self.model.rnn(feeds, context, (h,c))
scores = F.softmax(scores, -1)
scores = scores.log() + sorted_scores.view(-1,1) # (N*B, V)
scores = torch.reshape(scores, (N, -1)) # (N, B*V)
sorted_scores, idxes = scores.topk(b_size, dim=1) # (N, B)
prior_candidate = candidates[np.arange(N)[:,None], idxes / V] # (N, B, t)
current_candidate = (idxes % V).unsqueeze(-1).cpu() # (N, B, 1)
candidates = torch.cat([prior_candidate, current_candidate], -1) # (N, B, t+1)
feeds = torch.reshape(candidates[:,:,-1], (-1,1)).cuda() # (N*B, 1)
captions = candidates[:,0,:].squeeze().data.cpu().numpy()
captions = np.concatenate([np.ones((N,1), dtype=np.int32) * self._start, captions], 1)
return captions
def check_bleu_pre(self, split, num_samples, batch_size=512, check_loss=False):
captions, features, _ = sample_batch(self.data, num_samples, split=split)
gt_captions = decode_captions(captions.numpy(), self.data['idx_to_word'])
num_batches = num_samples // batch_size
if num_samples % batch_size != 0:
num_batches += 1
with torch.no_grad():
if check_loss:
self.model.eval()
loss = 0
for i in range(num_batches):
start = i * batch_size
end = (i + 1) * batch_size
feat_batch = features[start:end].clone()
cap_batch = captions[start:end].clone()
loss += self.forward_net(feat_batch, cap_batch)
loss /= num_batches
total_score = 0.
for i in range(num_batches):
start = i * batch_size
end = (i + 1) * batch_size
sample_captions = self.sample(features[start:end])
sample_captions = decode_captions(sample_captions, self.data['idx_to_word'])
# for gt_caption, sample_caption in zip(gt_captions[start:end], sample_captions):
# total_score += BLEU_score(gt_caption, sample_caption)
total_score += eval_bleu.calculate(list(map(remove_special_tokens, gt_captions[start:end])),
list(map(remove_special_tokens, sample_captions)))[bleu_type]
if check_loss:
# return loss.item(), total_score / num_samples
return loss.item(), total_score / num_batches
# return total_score / num_samples
return total_score / num_batches
def check_bleu(self, loader, num_batches, check_loss=False):
if check_loss:
self.model.eval()
loss = 0
total_score = 0.
with torch.no_grad():
for t, (ims, captions) in enumerate(loader):
ims = ims.to(device)
features = extract_features(cnn, ims).squeeze()
gt_captions = decode_captions(captions.numpy(), self.idx_to_word)
if check_loss:
loss += self.forward_net(features, captions)
sample_captions = self.sample(features)
sample_captions = decode_captions(sample_captions, self.idx_to_word)
# for gt_caption, sample_caption in zip(gt_captions, sample_captions):
# total_score += BLEU_score(gt_caption, sample_caption)
total_score += eval_bleu.calculate(list(map(remove_special_tokens, gt_captions)),
list(map(remove_special_tokens, sample_captions)))[bleu_type]
if (t+1) == num_batches:
break
if check_loss:
loss /= num_batches
# return loss.item(), total_score / (num_batches*loader.batch_size)
return loss.item(), total_score / num_batches
# return total_score / (num_batches*loader.batch_size)
return total_score / num_batches