forked from xirongc/watermark-audio-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
286 lines (246 loc) · 9.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import argparse
import traceback
import shutil
import logging
import yaml
import sys
import os
import torch
import numpy as np
import torch.utils.tensorboard as tb
torch.set_printoptions(sci_mode=False)
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()["__doc__"])
parser.add_argument(
"--dataset", type=str, required=True
)
parser.add_argument(
"--config", type=str, required=True, help="Path to the config file"
)
parser.add_argument("--seed", type=int, default=1234, help="Random seed")
parser.add_argument(
"--exp", type=str, default="exp", help="Path for saving running related data."
)
parser.add_argument(
"--doc",
type=str,
default='ddpm',
help="A string for documentation purpose. "
"Will be the name of the log folder.",
)
parser.add_argument(
"--comment", type=str, default="", help="A string for experiment comment"
)
parser.add_argument(
"--verbose",
type=str,
default="info",
help="Verbose level: info | debug | warning | critical",
)
parser.add_argument("--test", action="store_true", help="Whether to test the model")
parser.add_argument(
"--sample",
action="store_true",
help="Whether to produce samples from the model",
)
parser.add_argument("--fid", action="store_true")
parser.add_argument("--interpolation", action="store_true")
parser.add_argument(
"--resume_training", action="store_true", help="Whether to resume training"
)
parser.add_argument(
"-i",
"--image_folder",
type=str,
default="images",
help="The folder name of samples",
)
parser.add_argument(
"--ni",
action="store_true",
help="No interaction. Suitable for Slurm Job launcher",
)
parser.add_argument("--use_pretrained", action="store_true")
parser.add_argument(
"--sample_type",
type=str,
default="generalized",
help="sampling approach (generalized or ddpm_noisy)",
)
parser.add_argument(
"--skip_type",
type=str,
default="uniform",
help="skip according to (uniform or quadratic)",
)
parser.add_argument(
"--timesteps", type=int, default=1000, help="number of steps involved"
)
parser.add_argument(
"--eta",
type=float,
default=0.0,
help="eta used to control the variances of sigma",
)
parser.add_argument("--sequence", action="store_true")
# attack
parser.add_argument('--cond_prob', type=float, default=1.0)
parser.add_argument('--gamma', type=float, default=None)
parser.add_argument('--target_label', type=int, default=6)
## default trigger passing to the function is hello_kitty.png, later we need to change to our own trigger
parser.add_argument('--miu_path', type=str, default='./images/esc50_sound.png')
# parser.add_argument('--miu_path', type=str, default='./images/infrasound_10Hz.png')
parser.add_argument('--total_n_samples', type=int, default=50000)
parser.add_argument('--trigger_type', type=str, default='blend')
parser.add_argument('--patch_size', type=int, default=3)
# choose watermark type, and it's require
parser.add_argument('--watermark', type=str, default='d2din')
args = parser.parse_args()
## build the data path for saving the training attack model, it was set to /data, which obviously doesn't exist
## when creating non-existing diectory, it run into error. So let's save it within this directory "./ckpt/ddpm_attack"
## don't use model, because there is a directory called model already, storing diffusion classes
args.exp = os.path.join(f'./ckpt/{args.watermark}',
'ft_cond_prob_' + str(args.cond_prob) + '_gamma_' + str(
args.gamma) + '_target_label_' + str(args.target_label) + '_trigger_type_' + str(
args.trigger_type)) # attack
if args.trigger_type == 'patch':
args.exp = args.exp + '_size_' + str(args.patch_size)
# # check watermarking type
# if args.watermark == "d2din":
# from watermark.d2din import Diffusion
if not os.path.exists(args.exp):
os.makedirs(args.exp)
args.log_path = os.path.join(args.exp, "logs", args.doc)
if not os.path.exists(args.log_path):
os.makedirs(args.log_path)
# parse config file
with open(os.path.join("configs", args.config), "r") as f:
config = yaml.safe_load(f)
new_config = dict2namespace(config)
tb_path = os.path.join(args.exp, "tensorboard", args.doc)
if not os.path.exists(tb_path):
os.makedirs(tb_path)
if not args.test and not args.sample:
# if not args.resume_training:
if os.path.exists(args.log_path):
overwrite = False
if args.ni:
overwrite = True
else:
response = input("Folder already exists. Overwrite? (Y/N)")
if response.upper() == "Y":
overwrite = True
if overwrite:
shutil.rmtree(args.log_path)
shutil.rmtree(tb_path)
os.makedirs(args.log_path)
if os.path.exists(tb_path):
shutil.rmtree(tb_path)
else:
print("Folder exists. Program halted.")
sys.exit(0)
else:
os.makedirs(args.log_path)
with open(os.path.join(args.log_path, "config.yml"), "w") as f:
yaml.dump(new_config, f, default_flow_style=False)
new_config.tb_logger = tb.SummaryWriter(log_dir=tb_path)
# setup logger
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError("level {} not supported".format(args.verbose))
handler1 = logging.StreamHandler()
handler2 = logging.FileHandler(os.path.join(args.log_path, "stdout.txt"))
formatter = logging.Formatter(
"%(levelname)s - %(filename)s - %(asctime)s - %(message)s"
)
handler1.setFormatter(formatter)
handler2.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.addHandler(handler2)
logger.setLevel(level)
else:
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError("level {} not supported".format(args.verbose))
handler1 = logging.StreamHandler()
formatter = logging.Formatter(
"%(levelname)s - %(filename)s - %(asctime)s - %(message)s"
)
handler1.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.setLevel(level)
if args.sample:
os.makedirs(os.path.join(args.exp, "image_samples"), exist_ok=True)
args.image_folder = os.path.join(
args.exp, "image_samples", args.image_folder
)
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
else:
if not (args.fid or args.interpolation):
overwrite = False
if args.ni:
overwrite = True
else:
response = input(
f"Image folder {args.image_folder} already exists. Overwrite? (Y/N)"
)
if response.upper() == "Y":
overwrite = True
if overwrite:
shutil.rmtree(args.image_folder)
os.makedirs(args.image_folder)
else:
print("Output image folder exists. Program halted.")
sys.exit(0)
# add device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
logging.info("Using device: {}".format(device))
new_config.device = device
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
return args, new_config
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def main():
args, config = parse_args_and_config()
logging.info("Writing log file to {}".format(args.log_path))
logging.info("Exp instance id = {}".format(os.getpid()))
logging.info("Exp comment = {}".format(args.comment))
# check arguments for different watermarking
if args.watermark == "d2din":
# print("reach::")
from watermark.d2din import Diffusion
elif args.watermark == "d2dout":
from watermark.d2dout import Diffusion
elif args.watermark == "d2i":
from watermark.d2i import Diffusion
else:
print("watermarking type doesn't recognized, program terminated")
return 0
try:
runner = Diffusion(args, config)
if args.sample:
runner.sample()
elif args.test:
runner.test()
else:
runner.train()
except Exception:
logging.error(traceback.format_exc())
return 0
if __name__ == "__main__":
sys.exit(main())