For training and testing, the directory structure is as follows:
|-- datasets
# image SR - train
|-- DF2K
|-- HR
|-- LR_bicubic
|-- X2
|-- X3
|-- X4
# image SR - test
|-- benchmark
|-- Set5
|-- HR
|-- LR_bicubic
|-- X2
|-- X3
|-- X4
|-- Set14
|-- HR
|-- LR_bicubic
|-- X2
|-- X3
|-- X4
|-- B100
|-- HR
|-- LR_bicubic
|-- X2
|-- X3
|-- X4
|-- Urban100
|-- HR
|-- LR_bicubic
|-- X2
|-- X3
|-- X4
|-- Manga109
|-- HR
|-- LR_bicubic
|-- X2
|-- X3
|-- X4
# grayscale JPEG compression artifact reduction - train
|-- DFWB
|-- HQ
|-- LQ
|-- 10
|-- 20
|-- 30
|-- 40
# grayscale JPEG compression artifact reduction - test
|-- CAR
|-- classic5
|-- Classic5_HQ
|-- Classic5_LQ
|-- 10
|-- 20
|-- 30
|-- 40
|-- LIVE1
|-- LIVE1_HQ
|-- LIVE1_LQ
|-- 10
|-- 20
|-- 30
|-- 40
|-- Urban100
|-- Urban100_HQ
|-- Urban100_LQ
|-- 10
|-- 20
|-- 30
|-- 40
# real image denoising - test
|-- real-DN
|-- SIDD
|-- ValidationGtBlocksSrgb.mat
|-- ValidationNoisyBlocksSrgb.mat
|-- DND
|-- info.mat
|-- ValidationNoisyBlocksSrgb
|-- 0001.mat
|-- 0002.mat
:
|-- 0050.mat
|-- restormer
# real image denoising - train & val
|-- datasets
|-- SIDD
|-- train
|-- target_crops
|-- input_crops
|-- val
|-- target_crops
|-- input_crops
# the raw data of SIDD-train
|-- raw
|-- 0001_001_S6_00100_00060_3200_L
:
|-- 0200_010_GP_01600_03200_5500_N
You can download the complete datasets we have collected.