-
Notifications
You must be signed in to change notification settings - Fork 8
/
utils.py
204 lines (165 loc) · 6.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import math
import time
import wandb
import random
import logging
import inspect
import argparse
import datetime
import subprocess
import cv2
from pathlib import Path
import numpy as np
from tqdm.auto import tqdm
from einops import rearrange
from omegaconf import OmegaConf
from safetensors import safe_open
from typing import Dict, Optional, Tuple
import torch
import torchvision
import torch.nn.functional as F
import torch.distributed as dist
from torch.optim.swa_utils import AveragedModel
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.models import UNet2DConditionModel
from diffusers.pipelines import StableDiffusionInpaintPipeline
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
import transformers
from transformers import CLIPTextModel, CLIPProcessor, CLIPVisionModel, CLIPTokenizer
from cococo.models.unet import UNet3DConditionModel
from cococo.pipelines.pipeline_animation_inpainting_cross_attention_vae import AnimationInpaintPipeline
from cococo.utils.util import save_videos_grid, zero_rank_print
def load_model(
model_path: str,
pretrained_model_path: str,
sub_folder: str = "unet",
text_device: str = "cuda:0",
unet_device: str = "cuda:1",
unet_checkpoint_path: str = "",
unet_additional_kwargs: Dict = {},
noise_scheduler_kwargs = None,
global_seed: int = 42
):
# Load scheduler, tokenizer and models.
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
unet = UNet3DConditionModel.from_pretrained_2d(
pretrained_model_path, subfolder=sub_folder,
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs)
)
state_dict = {}
for i in range(4):
state_dict2 = torch.load(f'{model_path}/model_{i}.pth', map_location='cpu')
state_dict = {**state_dict, **state_dict2}
state_dict2 = {}
for key in state_dict:
if 'pe' in key:
continue
state_dict2[key.split('module.')[1]] = state_dict[key]
m, u = unet.load_state_dict(state_dict2, strict=False)
vae = vae.to(text_device).half().eval()
text_encoder = text_encoder.to(text_device).half().eval()
unet = unet.to(unet_device).half().eval()
validation_pipeline = AnimationInpaintPipeline(
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
)
validation_pipeline.enable_vae_slicing()
return validation_pipeline
def generate_frames(images, masks, output_dir, validation_pipeline, vae, prompt, negative_prompt, guidance_scale, text_device="cuda:0", unet_device="cuda:1"):
pixel_values = torch.tensor(images).to(device=vae.device, dtype=torch.float16)
test_masks = torch.tensor(masks).to(device=vae.device, dtype=torch.float16)
height,width = images.shape[-3:-1]
prefix = 'test_release_'+str(guidance_scale)+'_guidance_scale'
latents = []
masks = []
with torch.no_grad():
for i in range(len(pixel_values)):
pixel_value = rearrange(pixel_values[i:i+1], "f h w c -> f c h w")
test_mask = rearrange(test_masks[i:i+1], "f h w c -> f c h w")
masked_image = (1-test_mask)*pixel_value
latent = vae.encode(masked_image).latent_dist.sample()
test_mask = torch.nn.functional.interpolate(test_mask, size=latent.shape[-2:]).cuda()
latent = rearrange(latent, "f c h w -> c f h w")
test_mask = rearrange(test_mask, "f c h w -> c f h w")
latent = latent * 0.18215
latents.append(latent)
masks.append(test_mask)
latents = torch.cat(latents,dim=1)
test_masks = torch.cat(masks,dim=1)
latents = latents[None,...]
masks = test_masks[None,...]
generator = torch.Generator(device=latents.device)
generator.manual_seed(int(time.time()))
with torch.no_grad():
videos, masked_videos, recon_videos = validation_pipeline(
prompt,
image = latents,
masked_image = latents,
masked_latents = None,
masks = masks,
generator = generator,
video_length = len(images),
negative_prompt = negative_prompt,
height = height,
width = width,
num_inference_steps = 50,
guidance_scale = guidance_scale,
unet_device=unet_device
)
videos = videos.permute(0,2,1,3,4).contiguous()/0.18215
images = []
for i in range(len(videos[0])):
image = vae.decode(videos[0][i:i+1].half().to(text_device)).sample
images.append(image)
video = torch.cat(images,dim=0)
video = video/2 + 0.5
video = torch.clamp(video, 0, 1)
video = video.permute(0,2,3,1)
images = []
video = 255.0*video.cpu().detach().numpy()
for i in range(len(video)):
image = video[i]
image = np.uint8(image)
#image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
#cv2.imwrite(output_dir+'/'+prefix+'_image_'+str(i)+'.png',image)
images.append(image)
return images
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--prompt", type=str, default="")
parser.add_argument("--negative_prompt", type=str, default="")
parser.add_argument("--model_path", type=str, default="../")
parser.add_argument("--pretrain_model_path", type=str, default="../")
parser.add_argument("--sub_folder", type=str, default="unet")
parser.add_argument("--guidance_scale", type=float, default=20)
parser.add_argument("--video_path", type=str, default="")
args = parser.parse_args()
config = OmegaConf.load(args.config)
validation_pipeline = load_model( \
model_path=args.model_path, \
sub_folder=args.sub_folder, \
pretrained_model_path=args.pretrain_model_path, \
**config
)
video_path = args.video_path+'/images.npy'
mask_path = args.video_path+'/masks.npy'
images = 2*(np.load(video_path)/255.0 - 0.5)
masks = np.load(mask_path)/255.0
generate_frames(\
images=images, \
masks=masks, \
output_dir = './outputs', \
validation_pipeline=validation_pipeline, \
vae = validation_pipeline.vae, \
prompt=args.prompt, \
negative_prompt=args.negative_prompt, \
guidance_scale=args.guidance_scale)