Implementation of RetinaNet (this is converted from maskrcnn-benchmark)
- Python 3.6
- PyTorch 1.1
- OpenCV
Model | maskrcnn | converted | train(TODO) |
---|---|---|---|
RetinaNet_R-50-FPN_1x | 36.3 | 36.3 | |
RetinaNet_R-101-FPN_1x | 38.5 | 38.5 |
$ cd scripts
$ python demo.py [--config-file ../configs/retina_resnet50_v1b_coco.yaml] [--images ../png/biking.jpg]
$ cd scripts
$ python eval.py [--config-file ../configs/retina_resnet50_v1b_coco.yaml]
$ cd scripts
$ export NGPUS=4
$ python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py [--config-file ../configs/retina_resnet50_v1b_coco.yaml] [--skip-test false]
You can modify training and test setting in
configs/xxx.yaml
andconfigs/defaults.py
- Add freeze backbone
- Add training results