Skip to content

Ahmed471996/Supervised_ML_tutorials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SupervisedML

Introduction

This repo is all about supervised machine learning algorithms (regression and classification) implementation with different type of datasets in sklearn.

Algorithms

  1. Single variable Linear regression Algorithm
  2. Multi-variable Linear regression Algorithm
  3. Polynomial regression Algorithm
  4. Logistic Regression Algorithm
  5. Knn Algorithm
  6. SVM Algorithm
  7. Decision Trees Algorithm
  8. Bagging Algorithm
  9. Adaboost Algorithm
  10. Random Forests Algorithm
  11. MLP Algorithm
  12. Naive Bayes Algorithm
  13. XGboost Algorithm
  14. Lgboost Algorithm
  15. Ridge Algorithm
  16. Lasso Algorithm
  17. Elastic Net Algorithm

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published