Skip to content

Silero Models: pre-trained STT models and benchmarks made embarrassingly simple

License

Notifications You must be signed in to change notification settings

AigizK/silero-models

 
 

Repository files navigation

Mailing list : test Mailing list : test License: CC BY-NC 4.0

Open on Torch Hub Open on TF Hub

Open In Colab

header)

Silero Models

Silero Models: pre-trained enterprise-grade STT models and benchmarks. Enterprise-grade STT made refreshingly simple (seriously, see benchmarks). We provide quality comparable to Google's STT (and sometimes even better) and we are not Google.

As a bonus:

  • No Kaldi;
  • No compilation;
  • No 20-step instructions;

Speech-To-Text

All of the provided models are listed in the models.yml file. Any meta-data and newer versions will be added there.

Currently we provide the following checkpoints:

PyTorch ONNX TensorFlow Quantization Quality Colab
English (en_v2) ✔️ ✔️ ✔️ link Open In Colab
German (de_v1) ✔️ ✔️ ✔️ link Open In Colab
Spanish (es_v1) ✔️ ✔️ ✔️ link Open In Colab
Ukrainian (ua_v3) ✔️ ✔️ ✔️ N/A Open In Colab

Dependencies

  • All examples:
    • torch (used to clone the repo in tf and onnx examples)
    • torchaudio
    • soundfile
    • omegaconf
  • Additional for ONNX examples:
    • onnx
    • onnxruntime
  • Additional for TensorFlow examples:
    • tensorflow
    • tensorflow_hub

Please see the provided Colab for details for each example below.

PyTorch

Open In Colab

Open on Torch Hub

import torch
import zipfile
import torchaudio
from glob import glob

device = torch.device('cpu')  # gpu also works, but our models are fast enough for CPU
model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models',
                                       model='silero_stt',
                                       language='en', # also available 'de', 'es'
                                       device=device)
(read_batch, split_into_batches,
 read_audio, prepare_model_input) = utils  # see function signature for details

# download a single file, any format compatible with TorchAudio (soundfile backend)
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav',
                               dst ='speech_orig.wav', progress=True)
test_files = glob('speech_orig.wav') 
batches = split_into_batches(test_files, batch_size=10)
input = prepare_model_input(read_batch(batches[0]),
                            device=device)

output = model(input)
for example in output:
    print(decoder(example.cpu()))

ONNX

Open In Colab

You can run our model everywhere, where you can import the ONNX model or run ONNX runtime.

import onnx
import torch
import onnxruntime
from omegaconf import OmegaConf

language = 'en' # also available 'de', 'es'

# load provided utils
_, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_stt', language=language)
(read_batch, split_into_batches,
 read_audio, prepare_model_input) = utils

# see available models
torch.hub.download_url_to_file('https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml', 'models.yml')
models = OmegaConf.load('models.yml')
available_languages = list(models.stt_models.keys())
assert language in available_languages

# load the actual ONNX model
torch.hub.download_url_to_file(models.stt_models.en.latest.onnx, 'model.onnx', progress=True)
onnx_model = onnx.load('model.onnx')
onnx.checker.check_model(onnx_model)
ort_session = onnxruntime.InferenceSession('model.onnx')

# download a single file, any format compatible with TorchAudio (soundfile backend)
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav', dst ='speech_orig.wav', progress=True)
test_files = ['speech_orig.wav']
batches = split_into_batches(test_files, batch_size=10)
input = prepare_model_input(read_batch(batches[0]))

# actual onnx inference and decoding
onnx_input = input.detach().cpu().numpy()
ort_inputs = {'input': onnx_input}
ort_outs = ort_session.run(None, ort_inputs)
decoded = decoder(torch.Tensor(ort_outs[0])[0])
print(decoded)

TensorFlow

Open In Colab

Open on TF Hub

SavedModel example

import os
import torch
import subprocess
import tensorflow as tf
import tensorflow_hub as tf_hub
from omegaconf import OmegaConf

language = 'en' # also available 'de', 'es'

# load provided utils using torch.hub for brevity
_, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_stt', language=language)
(read_batch, split_into_batches,
 read_audio, prepare_model_input) = utils

# see available models
torch.hub.download_url_to_file('https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml', 'models.yml')
models = OmegaConf.load('models.yml')
available_languages = list(models.stt_models.keys())
assert language in available_languages

# load the actual tf model
torch.hub.download_url_to_file(models.stt_models.en.latest.tf, 'tf_model.tar.gz')
subprocess.run('rm -rf tf_model && mkdir tf_model && tar xzfv tf_model.tar.gz -C tf_model',  shell=True, check=True)
tf_model = tf.saved_model.load('tf_model')

# download a single file, any format compatible with TorchAudio (soundfile backend)
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav', dst ='speech_orig.wav', progress=True)
test_files = ['speech_orig.wav']
batches = split_into_batches(test_files, batch_size=10)
input = prepare_model_input(read_batch(batches[0]))

# tf inference
res = tf_model.signatures["serving_default"](tf.constant(input.numpy()))['output_0']
print(decoder(torch.Tensor(res.numpy())[0]))

Text-To-Speech

All of the provided models are listed in the models.yml file. Any meta-data and newer versions will be added there.

Currently we provide the following speakers:

Speaker Stress Language SR PyTorch Colab
aidar_8khz yes ru 8000 ✔️ Open In Colab
baya_8khz yes ru 8000 ✔️ Open In Colab
ksenia_8khz yes ru 8000 ✔️ Open In Colab
irina_8khz yes ru 8000 ✔️ Open In Colab
natasha_8khz yes ru 8000 ✔️ Open In Colab
ruslan_8khz yes ru 8000 ✔️ Open In Colab
lj_8khz no en 8000 ✔️ Open In Colab
thorsten_8khz no de 8000 ✔️ Open In Colab
gilles_8khz no fr 8000 ✔️ Open In Colab
tux_8khz no es 8000 ✔️ Open In Colab
aidar_16khz yes ru 16000 ✔️ Open In Colab
baya_16khz yes ru 16000 ✔️ Open In Colab
ksenia_16khz yes ru 16000 ✔️ Open In Colab
irina_16khz yes ru 16000 ✔️ Open In Colab
natasha_16khz yes ru 16000 ✔️ Open In Colab
ruslan_16khz yes ru 16000 ✔️ Open In Colab
lj_16khz no en 16000 ✔️ Open In Colab
thorsten_16khz no de 16000 ✔️ Open In Colab
gilles_16khz no fr 16000 ✔️ Open In Colab
tux_16khz no es 16000 ✔️ Open In Colab

Dependencies

Basic dependencies (see colab):

  • torch
  • omegaconf
  • torchaudio (required only because models are hosted together with STT, not required for work)

PyTorch

Open In Colab

Coming soon Open on Torch Hub

import torch

language = 'ru'
speaker = 'kseniya_16khz'
device = torch.device('cpu')
model, symbols, sample_rate, example_text, apply_tts = torch.hub.load(repo_or_dir='snakers4/silero-models',
                                                                      model='silero_tts',
                                                                      language=language,
                                                                      speaker=speaker)
model = model.to(device)  # gpu or cpu
audio = apply_tts(texts=[example_text],
                  model=model,
                  sample_rate=sample_rate,
                  symbols=symbols,
                  device=device)

FAQ

Wiki

Also check out our wiki.

Performance and Quality

Please refer to this wiki sections:

Adding new Languages

Please refer here.

Contact

Get in Touch

Try our models, create an issue, join our chat, email us, read our news.

Commercial Inquiries

Please see our wiki and tiers for relevant information and email us.

About

Silero Models: pre-trained STT models and benchmarks made embarrassingly simple

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 63.3%
  • Python 36.7%