This is a pytorch implementation of Hindsight Experience Replay.
Linux: https://mpi4py.readthedocs.io/en/stable/install.html
https://neptune.ai/blog/installing-mujoco-to-work-with-openai-gym-environments
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/andreas/.mujoco/mjpro150/bin
sudo apt-get install libosmesa6-dev
sudo apt-get install patchelf
- train the FetchReach-v1:
mpirun -np 1 python main.py --env='FetchReach-v1' --clip-return --device='cuda' --debug-mode --name='FetchReach-v1' --auto-save --logger-name='FetchReach-v1' --checkpoint-dir '../../../../data/experiments'
- train the FetchPush-v1:
mpirun -np 8 python main.py --env='FetchPush-v1' --clip-return --device='cpu' --debug-mode --name='FetchPush-v1' --auto-save --logger-name='FetchPush-v1' --checkpoint-dir '../../../../data/experiments'
- train the FetchPickAndPlace-v1:
mpirun -np 16 python main.py --env='FetchPickAndPlace-v1' --clip-return --device='cpu' --debug-mode --name='FetchPickAndPlace-v1' --auto-save --logger-name='FetchPickAndPlace-v1' --checkpoint-dir '../../../../data/experiments'
- train the FetchSlide-v1:
mpirun -np 1 python main.py --env='FetchSlide-v1' --clip-return --device='cuda' --debug-mode --name='FetchSlide-v1' --auto-save --logger-name='FetchSlide-v1' --checkpoint-dir '../../../../data/experiments'
Table with pretrained model stats
- Add
tensorboard
- Add
docstrings
- Add instructions for mujoco on Windows
- Experiments
- Include pretrained models
- Include examples
- Complete
README