Skip to content

The provided numpy code examples cover a wide range of functionalities including statistical calculations (e.g., mean, variance), machine learning algorithms (e.g., clustering, regression), distance metrics (e.g., Jensen-Shannon, Manhattan), and optimization techniques (e.g., stochastic gradient descent).

License

Notifications You must be signed in to change notification settings

ArtificialIntelligenceResearch/200-NumPy-Basic-Practices-Code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation


Exploring Advanced Numpy Functionality: A Diverse Range of Applications in Data Analysis and Scientific Computing


The provided numpy code examples cover a wide range of functionalities including statistical calculations (e.g., mean, variance), machine learning algorithms (e.g., clustering, regression), distance metrics (e.g., Jensen-Shannon, Manhattan), and optimization techniques (e.g., stochastic gradient descent). These examples demonstrate numpy's versatility for various data analysis and scientific computing tasks.

  1. Creating Arrays:
import numpy as np

# Creating a 1D array
array_1d = np.array([1, 2, 3, 4, 5])

# Creating a 2D array
array_2d = np.array([[1, 2, 3], [4, 5, 6]])
  1. Array Operations:
import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

# Element-wise addition
result_add = np.add(a, b)

# Element-wise multiplication
result_multiply = np.multiply(a, b)
  1. Array Slicing:
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Slicing rows and columns
slice_1 = arr[0:2, 1:3]  # Selects rows 0 and 1, columns 1 and 2
  1. Array Reshaping:
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

# Reshaping array
reshaped_array = np.reshape(arr, (3, 2))
  1. Array Broadcasting:
import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6]])
b = np.array([10, 20, 30])

# Broadcasting addition
result = a + b
  1. Array Transposition:
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

# Transposing array
transposed_array = np.transpose(arr)
  1. Array Concatenation:
import numpy as np

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]])

# Concatenating arrays
result = np.concatenate((a, b), axis=0)
  1. Array Randomization:
import numpy as np

# Generating random array
random_array = np.random.rand(3, 3)
  1. Array Reduction:
import numpy as np

arr = np.array([1, 2, 3, 4, 5])

# Summing array elements
result_sum = np.sum(arr)
  1. Array Comparison:
import numpy as np

a = np.array([1, 2, 3])
b = np.array([1, 4, 3])

# Comparing arrays element-wise
comparison_result = np.array_equal(a, b)
  1. Array Indexing with Boolean Arrays:
import numpy as np

arr = np.array([1, 2, 3, 4, 5])

# Indexing with boolean arrays
mask = arr > 2
result = arr[mask]
  1. Array Stacking:
import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

# Stacking arrays horizontally
result_horizontal = np.hstack((a, b))

# Stacking arrays vertically
result_vertical = np.vstack((a, b))
  1. Matrix Multiplication:
import numpy as np

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])

# Matrix multiplication
result = np.matmul(a, b)
  1. Array Iteration:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Iterating over array elements
for x in np.nditer(arr):
    print(x)
  1. Finding Unique Elements:
import numpy as np

arr = np.array([1, 2, 3, 1, 2, 4])

# Finding unique elements
unique_elements = np.unique(arr)
  1. Applying Functions Element-Wise:
import numpy as np

arr = np.array([1, 2, 3, 4])

# Applying function element-wise
result = np.sqrt(arr)
  1. Array Splitting:
import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])

# Splitting array into multiple sub-arrays
result = np.split(arr, [2, 4])
  1. Finding Maximum and Minimum Values:
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

# Finding maximum and minimum values
max_value = np.max(arr)
min_value = np.min(arr)
  1. Creating Identity Matrix:
import numpy as np

# Creating identity matrix
identity_matrix = np.eye(3)
  1. Loading Data from File:
import numpy as np

# Loading data from file
data = np.loadtxt('data.txt', delimiter=',')
  1. Sorting Arrays:
import numpy as np

arr = np.array([3, 1, 2, 5, 4])

# Sorting array
sorted_array = np.sort(arr)
  1. Finding Indices of Maximum and Minimum Values:
import numpy as np

arr = np.array([3, 1, 5, 2, 4])

# Finding indices of maximum and minimum values
max_index = np.argmax(arr)
min_index = np.argmin(arr)
  1. Calculating Cumulative Sum and Product:
import numpy as np

arr = np.array([1, 2, 3, 4])

# Calculating cumulative sum and product
cumulative_sum = np.cumsum(arr)
cumulative_product = np.cumprod(arr)
  1. Finding Intersection and Union of Arrays:
import numpy as np

a = np.array([1, 2, 3, 4])
b = np.array([3, 4, 5, 6])

# Finding intersection and union of arrays
intersection = np.intersect1d(a, b)
union = np.union1d(a, b)
  1. Applying Custom Functions to Arrays:
import numpy as np

def custom_function(x):
    return x ** 2 + 1

arr = np.array([1, 2, 3, 4])

# Applying custom function to array
result = np.apply_along_axis(custom_function, axis=0, arr=arr)
  1. Reshaping Arrays with Unknown Dimensions:
import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])

# Reshaping array with unknown dimension
reshaped_array = np.reshape(arr, (-1, 2))
  1. Creating Diagonal Matrices:
import numpy as np

# Creating diagonal matrices
diag_matrix = np.diag([1, 2, 3])
  1. Calculating Eigenvalues and Eigenvectors:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(arr)
  1. Calculating Dot Product of Arrays:
import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

# Calculating dot product of arrays
dot_product = np.dot(a, b)
  1. Filling Arrays with Specific Values:
import numpy as np

# Filling array with specific values
filled_array = np.full((3, 3), 5)
  1. Calculating Element-Wise Exponential:
import numpy as np

arr = np.array([1, 2, 3])

# Calculating element-wise exponential
result = np.exp(arr)
  1. Calculating Element-Wise Logarithm:
import numpy as np

arr = np.array([1, 2, 3])

# Calculating element-wise logarithm
result = np.log(arr)
  1. Finding Nonzero Elements:
import numpy as np

arr = np.array([[1, 0, 2], [0, 3, 0]])

# Finding nonzero elements
nonzero_indices = np.nonzero(arr)
  1. Calculating Trigonometric Functions:
import numpy as np

arr = np.array([0, np.pi/2, np.pi])

# Calculating trigonometric functions
sin_values = np.sin(arr)
cos_values = np.cos(arr)
  1. Generating Meshgrid:
import numpy as np

x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

# Generating meshgrid
X, Y = np.meshgrid(x, y)
  1. Calculating Element-Wise Square Root:
import numpy as np

arr = np.array([1, 4, 9])

# Calculating element-wise square root
result = np.sqrt(arr)
  1. Finding Unique Rows in a 2D Array:
import numpy as np

arr = np.array([[1, 2], [1, 2], [3, 4]])

# Finding unique rows
unique_rows = np.unique(arr, axis=0)
  1. Finding Diagonal Elements:
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Finding diagonal elements
diagonal_elements = np.diagonal(arr)
  1. Creating a Random Integer Array:
import numpy as np

# Creating a random integer array
random_array = np.random.randint(1, 10, size=(3, 3))
  1. Reshaping Arrays with Flattening:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Reshaping array with flattening
flattened_array = arr.flatten()
  1. Finding the Determinant of a Matrix:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Finding the determinant of a matrix
determinant = np.linalg.det(arr)
  1. Calculating Matrix Inverse:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating matrix inverse
inverse_matrix = np.linalg.inv(arr)
  1. Calculating Matrix Trace:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating matrix trace
matrix_trace = np.trace(arr)
  1. Calculating Matrix Rank:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating matrix rank
matrix_rank = np.linalg.matrix_rank(arr)
  1. Finding Eigenvalues and Eigenvectors of Symmetric Matrix:
import numpy as np

arr = np.array([[1, 2], [2, 1]])

# Finding eigenvalues and eigenvectors of symmetric matrix
eigenvalues, eigenvectors = np.linalg.eigh(arr)
  1. Creating a Sparse Matrix:
import numpy as np
from scipy.sparse import csr_matrix

# Creating a sparse matrix
sparse_matrix = csr_matrix((3, 3), dtype=np.int8).toarray()
  1. Performing Linear Interpolation:
import numpy as np

x = np.array([1, 2, 3, 4])
y = np.array([10, 20, 30, 40])

# Performing linear interpolation
interp_values = np.interp(2.5, x, y)
  1. Performing Polynomial Interpolation:
import numpy as np

x = np.array([1, 2, 3, 4])
y = np.array([10, 20, 30, 40])

# Performing polynomial interpolation
poly_coeffs = np.polyfit(x, y, 2)
interp_values = np.polyval(poly_coeffs, [2.5, 3.5])
  1. Calculating Cross Product of Vectors:
import numpy as np

a = np.array([1, 0, 0])
b = np.array([0, 1, 0])

# Calculating cross product of vectors
cross_product = np.cross(a, b)
  1. Finding Angle Between Vectors:
import numpy as np

a = np.array([1, 0])
b = np.array([0, 1])

# Finding angle between vectors
angle = np.arccos(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))
  1. Calculating Cumulative Sum Along a Specified Axis:
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

# Calculating cumulative sum along axis 0
cumulative_sum_axis_0 = np.cumsum(arr, axis=0)
  1. Calculating Cumulative Product Along a Specified Axis:
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

# Calculating cumulative product along axis 1
cumulative_product_axis_1 = np.cumprod(arr, axis=1)
  1. Finding Unique Elements and Their Counts:
import numpy as np

arr = np.array([1, 1, 2, 2, 2, 3])

# Finding unique elements and their counts
unique_elements, counts = np.unique(arr, return_counts=True)
  1. Calculating Matrix Exponential:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating matrix exponential
matrix_exponential = np.linalg.matrix_power(arr, 2)
  1. Calculating Frobenius Norm of a Matrix:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating Frobenius norm of a matrix
frobenius_norm = np.linalg.norm(arr)
  1. Finding Indices to Insert Elements to Maintain Order:
import numpy as np

arr = np.array([1, 3, 5, 7])

# Finding indices to insert elements to maintain order
indices = np.searchsorted(arr, [2, 4, 6])
  1. Calculating Matrix Condition Number:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating matrix condition number
condition_number = np.linalg.cond(arr)
  1. Calculating Matrix Determinant and Log Determinant:
import numpy as np

arr = np.array([[1, 2], [2, 1]])

# Calculating matrix determinant and log determinant
determinant = np.linalg.det(arr)
log_determinant = np.linalg.slogdet(arr)
  1. Finding Permutations and Combinations of Arrays:
import numpy as np
from itertools import permutations, combinations

arr = np.array([1, 2, 3])

# Finding permutations and combinations of arrays
permutations_result = np.array(list(permutations(arr)))
combinations_result = np.array(list(combinations(arr, 2)))
  1. Finding Smallest and Largest N Values in an Array:
import numpy as np

arr = np.array([1, 3, 5, 7, 2, 4, 6, 8])

# Finding smallest and largest N values
smallest_3_values = np.partition(arr, 3)[:3]
largest_3_values = np.partition(arr, -3)[-3:]
  1. Finding the Kronecker Product of Two Arrays:
import numpy as np

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])

# Finding the Kronecker product
kronecker_product = np.kron(arr1, arr2)
  1. Finding the Singular Value Decomposition (SVD) of a Matrix:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Performing Singular Value Decomposition (SVD)
U, S, V = np.linalg.svd(arr)
  1. Finding the Moore-Penrose Pseudo Inverse of a Matrix:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Finding the Moore-Penrose Pseudo Inverse
pseudo_inverse = np.linalg.pinv(arr)
  1. Calculating the Discrete Fourier Transform (DFT):
import numpy as np

arr = np.array([1, 2, 3, 4])

# Calculating Discrete Fourier Transform (DFT)
dft = np.fft.fft(arr)
  1. Calculating the Inverse Discrete Fourier Transform (IDFT):
import numpy as np

arr = np.array([1, 2, 3, 4])

# Calculating Inverse Discrete Fourier Transform (IDFT)
idft = np.fft.ifft(arr)
  1. Generating Random Numbers from the Standard Normal Distribution:
import numpy as np

# Generating random numbers from the standard normal distribution
random_numbers = np.random.randn(3, 3)
  1. Calculating the Moore-Penrose Generalized Inverse of a Matrix:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating the Moore-Penrose Generalized Inverse
gen_inverse = np.linalg.pinv(arr)
  1. Calculating the Convolution of Two Arrays:
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([0, 1, 0.5])

# Calculating the convolution of two arrays
convolution_result = np.convolve(arr1, arr2, mode='same')
  1. Finding the 2D Fast Fourier Transform (FFT):
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Finding the 2D Fast Fourier Transform (FFT)
fft_2d = np.fft.fft2(arr)
  1. Performing Linear Regression:
import numpy as np

x = np.array([0, 1, 2, 3, 4])
y = np.array([1, 3, 5, 7, 9])

# Performing linear regression
coefficients = np.polyfit(x, y, 1)
  1. Calculating Matrix Power:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating matrix power
matrix_power = np.linalg.matrix_power(arr, 3)
  1. Calculating Cross-Correlation of Arrays:
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([0, 1, 0.5])

# Calculating cross-correlation of arrays
cross_correlation = np.correlate(arr1, arr2, mode='valid')
  1. Calculating Pearson Correlation Coefficient:
import numpy as np

arr1 = np.array([1, 2, 3, 4, 5])
arr2 = np.array([5, 4, 3, 2, 1])

# Calculating Pearson correlation coefficient
pearson_coefficient = np.corrcoef(arr1, arr2)[0, 1]
  1. Calculating Covariance Matrix:
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

# Calculating covariance matrix
covariance_matrix = np.cov(arr1, arr2)
  1. Finding Roots of Polynomials:
import numpy as np

coefficients = np.array([1, -3, 2])  # Polynomial: x^2 - 3x + 2

# Finding roots of polynomial
roots = np.roots(coefficients)
  1. Calculating Kruskal-Wallis H Test:
import numpy as np
from scipy.stats import kruskal

group1 = np.array([1, 2, 3])
group2 = np.array([4, 5, 6])
group3 = np.array([7, 8, 9])

# Performing Kruskal-Wallis H test
H_statistic, p_value = kruskal(group1, group2, group3)
  1. Finding the Least Squares Solution to a Linear Matrix Equation:
import numpy as np

A = np.array([[1, 2], [3, 4]])
b = np.array([5, 6])

# Finding the least squares solution
solution = np.linalg.lstsq(A, b, rcond=None)[0]
  1. Generating Logarithmically Spaced Numbers:
import numpy as np

logspace_values = np.logspace(1, 3, num=5, base=10.0)

# Generating logarithmically spaced numbers
# Start: 10^1, End: 10^3, 5 values
  1. Calculating Bessel Functions:
import numpy as np
from scipy.special import jn

# Calculating Bessel functions of the first kind
bessel_values = jn(1, np.arange(5))
  1. Calculating Hyperbolic Functions:
import numpy as np

arr = np.array([0, 1, 2])

# Calculating hyperbolic sine, cosine, and tangent
sinh_values = np.sinh(arr)
cosh_values = np.cosh(arr)
tanh_values = np.tanh(arr)
  1. Calculating Multinomial Coefficients:
import numpy as np

# Calculating multinomial coefficients
coefficients = np.math.comb(10, [3, 4, 3])
  1. Calculating Exponential Moving Average (EMA):
import numpy as np

data = np.array([1, 2, 3, 4, 5])

# Calculating Exponential Moving Average (EMA)
ema = np.convolve(data, np.ones(3), mode='valid') / 3
  1. Calculating Binomial Coefficients:
import numpy as np

# Calculating binomial coefficients
coefficients = np.array([np.math.comb(5, k) for k in range(6)])
  1. Calculating Harmonic Mean:
import numpy as np

data = np.array([1, 2, 3, 4, 5])

# Calculating Harmonic Mean
harmonic_mean = len(data) / np.sum(1.0 / data)
  1. Calculating Weighted Average:
import numpy as np

data = np.array([1, 2, 3, 4, 5])
weights = np.array([1, 2, 3, 4, 5])

# Calculating Weighted Average
weighted_average = np.average(data, weights=weights)
  1. Calculating Factorial:
import numpy as np

# Calculating factorial
factorial = np.math.factorial(5)
  1. Calculating Cumulative Maximum and Minimum:
import numpy as np

data = np.array([1, 3, 2, 5, 4])

# Calculating cumulative maximum and minimum
cumulative_max = np.maximum.accumulate(data)
cumulative_min = np.minimum.accumulate(data)
  1. Calculating GCD and LCM:
import numpy as np

# Calculating greatest common divisor (GCD)
gcd = np.gcd.reduce([24, 36, 48])

# Calculating least common multiple (LCM)
lcm = np.lcm.reduce([6, 8, 12])
  1. Calculating Fermat's Little Theorem:
import numpy as np

# Calculating Fermat's Little Theorem
result = np.mod(np.power(2, 17), 17)
  1. Calculating the Error Function:
import numpy as np
from scipy.special import erf

# Calculating the error function
result = erf(0.5)
  1. Calculating Variance and Standard Deviation:
import numpy as np

data = np.array([1, 2, 3, 4, 5])

# Calculating variance and standard deviation
variance = np.var(data)
std_deviation = np.std(data)
  1. Calculating Covariance:
import numpy as np

data1 = np.array([1, 2, 3, 4, 5])
data2 = np.array([5, 4, 3, 2, 1])

# Calculating covariance
covariance = np.cov(data1, data2)[0, 1]
  1. Generating Random Numbers from a Uniform Distribution:
import numpy as np

# Generating random numbers from a uniform distribution
random_uniform = np.random.uniform(0, 1, size=(3, 3))
  1. Generating Random Numbers from a Normal Distribution:
import numpy as np

# Generating random numbers from a normal distribution
random_normal = np.random.normal(0, 1, size=(3, 3))
  1. Calculating Cumulative Distribution Function (CDF):
import numpy as np

data = np.array([1, 2, 3, 4, 5])

# Calculating cumulative distribution function (CDF)
cdf = np.cumsum(data) / np.sum(data)
  1. Calculating Percentile:
import numpy as np

data = np.array([1, 2, 3, 4, 5])

# Calculating percentile
percentile = np.percentile(data, 50)  # 50th percentile
  1. Calculating Weighted Percentile:
import numpy as np

data = np.array([1, 2, 3, 4, 5])
weights = np.array([1, 2, 3, 4, 5])

# Calculating weighted percentile
weighted_percentile = np.percentile(data, 50, weights=weights)
  1. Calculating Geometric Mean:
import numpy as np

data = np.array([1, 2, 4, 8, 16])

# Calculating geometric mean
geometric_mean = np.prod(data) ** (1 / len(data))
  1. Performing T-test:
import numpy as np
from scipy.stats import ttest_ind

group1 = np.array([1, 2, 3, 4, 5])
group2 = np.array([6, 7, 8, 9, 10])

# Performing T-test
t_statistic, p_value = ttest_ind(group1, group2)
  1. Calculating Poisson Distribution:
import numpy as np
from scipy.stats import poisson

# Calculating Poisson distribution
poisson_values = poisson.pmf(np.arange(10), mu=3)
  1. Calculating Bernoulli Numbers:
import numpy as np
from scipy.special import bernoulli

# Calculating Bernoulli numbers
bernoulli_numbers = bernoulli(5)
  1. Calculating Beta Function:
import numpy as np
from scipy.special import beta

# Calculating Beta function
result = beta(2, 3)
  1. Calculating Binomial Probability Mass Function:
import numpy as np
from scipy.stats import binom

# Calculating Binomial probability mass function
binomial_pmf = binom.pmf(3, 5, 0.5)
  1. Calculating Cauchy Principal Value:
import numpy as np
from scipy.special import pv

# Calculating Cauchy principal value
cauchy_pv = pv(1, 0)
  1. Calculating Chi-Square Test:
import numpy as np
from scipy.stats import chisquare

observed = np.array([10, 15, 20])
expected = np.array([12, 15, 18])

# Performing Chi-Square test
chi2, p_value = chisquare(observed, expected)
  1. Calculating Cumulative Distribution Function (CDF):
import numpy as np
from scipy.stats import norm

# Calculating cumulative distribution function (CDF) of a normal distribution
cdf = norm.cdf(0)
  1. Calculating Hypergeometric Distribution:
import numpy as np
from scipy.stats import hypergeom

# Calculating Hypergeometric distribution
hypergeom_dist = hypergeom.pmf(1, 10, 5, 3)
  1. Calculating Kolmogorov-Smirnov Test:
import numpy as np
from scipy.stats import kstest

data = np.random.normal(0, 1, 100)

# Performing Kolmogorov-Smirnov test
statistic, p_value = kstest(data, 'norm')
  1. Calculating Logistic Distribution:
import numpy as np
from scipy.stats import logistic

# Calculating logistic distribution
logistic_dist = logistic.cdf(0)
  1. Calculating Poisson Distribution:
import numpy as np
from scipy.stats import poisson

# Calculating Poisson distribution
poisson_dist = poisson.pmf(3, 5)
  1. Calculating Exponential Distribution:
import numpy as np
from scipy.stats import expon

# Calculating Exponential distribution
exponential_dist = expon.cdf(2, scale=1/3)
  1. Calculating Geometric Distribution:
import numpy as np
from scipy.stats import geom

# Calculating Geometric distribution
geometric_dist = geom.pmf(2, p=0.5)
  1. Calculating Gumbel Distribution:
import numpy as np
from scipy.stats import gumbel_r

# Calculating Gumbel distribution
gumbel_dist = gumbel_r.cdf(2)
  1. Calculating Laplace Distribution:
import numpy as np
from scipy.stats import laplace

# Calculating Laplace distribution
laplace_dist = laplace.cdf(2)
  1. Calculating Log-Normal Distribution:
import numpy as np
from scipy.stats import lognorm

# Calculating Log-Normal distribution
lognormal_dist = lognorm.cdf(2, s=0.5)
  1. Calculating Rayleigh Distribution:
import numpy as np
from scipy.stats import rayleigh

# Calculating Rayleigh distribution
rayleigh_dist = rayleigh.cdf(2, scale=1)
  1. Calculating Student's t Distribution:
import numpy as np
from scipy.stats import t

# Calculating Student's t distribution
t_dist = t.cdf(2, df=5)
  1. Calculating Weibull Distribution:
import numpy as np
from scipy.stats import weibull_min

# Calculating Weibull distribution
weibull_dist = weibull_min.cdf(2, c=1.5)
  1. Calculating Zipf Distribution:
import numpy as np
from scipy.stats import zipf

# Calculating Zipf distribution
zipf_dist = zipf.pmf(2, a=2)
  1. Performing One-Sample t-test:
import numpy as np
from scipy.stats import ttest_1samp

data = np.random.normal(0, 1, 100)

# Performing one-sample t-test
t_statistic, p_value = ttest_1samp(data, 0)
  1. Performing Two-Sample t-test:
import numpy as np
from scipy.stats import ttest_ind

data1 = np.random.normal(0, 1, 100)
data2 = np.random.normal(1, 1, 100)

# Performing two-sample t-test
t_statistic, p_value = ttest_ind(data1, data2)
  1. Performing Paired t-test:
import numpy as np
from scipy.stats import ttest_rel

data1 = np.random.normal(0, 1, 100)
data2 = data1 + np.random.normal(0, 0.5, 100)

# Performing paired t-test
t_statistic, p_value = ttest_rel(data1, data2)
  1. Performing Chi-Square Test of Independence:
import numpy as np
from scipy.stats import chi2_contingency

observed = np.array([[10, 5], [15, 20]])

# Performing Chi-Square test of independence
chi2, p_value, dof, expected = chi2_contingency(observed)
  1. Performing One-Way ANOVA:
import numpy as np
from scipy.stats import f_oneway

group1 = np.random.normal(0, 1, 100)
group2 = np.random.normal(1, 1, 100)
group3 = np.random.normal(2, 1, 100)

# Performing one-way ANOVA
f_statistic, p_value = f_oneway(group1, group2, group3)
  1. Performing Friedman Test:
import numpy as np
from scipy.stats import friedmanchisquare

group1 = np.random.normal(0, 1, 100)
group2 = np.random.normal(1, 1, 100)
group3 = np.random.normal(2, 1, 100)

# Performing Friedman test
chi2, p_value = friedmanchisquare(group1, group2, group3)
  1. Calculating Critical Values of Student's t-distribution:
import numpy as np
from scipy.stats import t

# Calculating critical values of Student's t-distribution
critical_values = t.ppf([0.025, 0.975], df=10)
  1. Calculating Inverse of Student's t-distribution:
import numpy as np
from scipy.stats import t

# Calculating inverse of Student's t-distribution
inverse_t = t.ppf(0.975, df=10)
  1. Calculating Quantiles of Student's t-distribution:
import numpy as np
from scipy.stats import t

# Calculating quantiles of Student's t-distribution
quantiles = t.ppf([0.25, 0.75], df=10)
  1. Performing Mann-Whitney U Test:
import numpy as np
from scipy.stats import mannwhitneyu

group1 = np.random.normal(0, 1, 100)
group2 = np.random.normal(1, 1, 100)

# Performing Mann-Whitney U test
U_statistic, p_value = mannwhitneyu(group1, group2)
  1. Performing Kruskal-Wallis H Test:
import numpy as np
from scipy.stats import kruskal

group1 = np.random.normal(0, 1, 100)
group2 = np.random.normal(1, 1, 100)
group3 = np.random.normal(2, 1, 100)

# Performing Kruskal-Wallis H test
H_statistic, p_value = kruskal(group1, group2, group3)

Sure, here are 10 more numpy code examples without repeating previous responses:

  1. Calculating Power of a Matrix:
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating power of a matrix
power_matrix = np.linalg.matrix_power(arr, 3)
  1. Solving Linear Equation System:
import numpy as np

A = np.array([[2, 3], [5, 4]])
b = np.array([4, 3])

# Solving linear equation system Ax = b
solution = np.linalg.solve(A, b)
  1. Finding Euclidean Distance:
import numpy as np

point1 = np.array([1, 2])
point2 = np.array([4, 6])

# Finding Euclidean distance
euclidean_distance = np.linalg.norm(point1 - point2)
  1. Finding Manhattan Distance:
import numpy as np

point1 = np.array([1, 2])
point2 = np.array([4, 6])

# Finding Manhattan distance
manhattan_distance = np.sum(np.abs(point1 - point2))
  1. Finding Chebyshev Distance:
import numpy as np

point1 = np.array([1, 2])
point2 = np.array([4, 6])

# Finding Chebyshev distance
chebyshev_distance = np.max(np.abs(point1 - point2))
  1. Calculating Matrix Rank:
import numpy as np

arr = np.array([[1, 2], [3, 4], [5, 6]])

# Calculating matrix rank
matrix_rank = np.linalg.matrix_rank(arr)
  1. Solving Ordinary Differential Equations (ODE):
import numpy as np
from scipy.integrate import solve_ivp

# Define the ODE
def ode(t, y):
    return y + t

# Solve the ODE
solution = solve_ivp(ode, [0, 1], [0])
  1. Calculating Vector Angle:
import numpy as np

vector1 = np.array([1, 0])
vector2 = np.array([0, 1])

# Calculating vector angle (in radians)
angle_rad = np.arccos(np.dot(vector1,
vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2)))
  1. Finding Matrix Eigenvalues and Eigenvectors:
import numpy as np

arr = np.array([[1, 2], [2, 1]])

# Finding matrix eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(arr)
  1. Calculating Matrix Singular Value Decomposition (SVD):
import numpy as np

arr = np.array([[1, 2], [3, 4]])

# Calculating matrix singular value decomposition (SVD)
U, S, VT = np.linalg.svd(arr)
  1. Calculating Jacobian Matrix:
import numpy as np

# Define the function
def f(x):
    return np.array([x[0] ** 2, np.sin(x[1])])

# Define the point
x = np.array([1.0, np.pi/4])

# Calculating Jacobian matrix
Jacobian = np.array([np.gradient(f(x), x) for x in x])
  1. Solving Nonlinear Equations:
from scipy.optimize import fsolve

# Define the equation
def equations(x):
    return [x[0] + 2 * x[1] - 3, x[0] ** 2 + x[1] ** 2 - 1]

# Solving the nonlinear equations
solution = fsolve(equations, [1, 1])
  1. Performing Principal Component Analysis (PCA):
import numpy as np
from sklearn.decomposition import PCA

# Generate random data
data = np.random.rand(10, 5)

# Perform PCA
pca = PCA(n_components=3)
pca.fit(data)
  1. Calculating Moore-Penrose Pseudo Inverse:
import numpy as np

# Define matrix
A = np.array([[1, 2], [3, 4]])

# Calculate Moore-Penrose Pseudo Inverse
pseudo_inverse = np.linalg.pinv(A)
  1. Generating Meshgrid for 2D Plotting:
import numpy as np
import matplotlib.pyplot as plt

# Generate meshgrid
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)

# Plot grid
plt.scatter(X, Y)
plt.show()
  1. Calculating Cosine Similarity:
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

# Define vectors
a = np.array([[1, 2]])
b = np.array([[2, 3]])

# Calculate cosine similarity
similarity = cosine_similarity(a, b)
  1. Calculating Jaccard Similarity:
import numpy as np
from sklearn.metrics import jaccard_similarity_score

# Define arrays
a = np.array([1, 2, 3, 4])
b = np.array([2, 3, 4, 5])

# Calculate Jaccard similarity
similarity = jaccard_similarity_score(a, b)
  1. Finding Hessian Matrix:
import numpy as np
from scipy.optimize import rosen, rosen_hess, rosen_hess_prod

# Define a point
x = np.array([1.3, 0.7])

# Calculate Hessian matrix
hessian = rosen_hess(x)
  1. Calculating Vandermonde Matrix:
import numpy as np

# Generate array
x = np.array([1, 2, 3, 4])

# Calculate Vandermonde matrix
vander_matrix = np.vander(x)
  1. Calculating QR Decomposition:
import numpy as np

# Define matrix
A = np.array([[1, 2], [3, 4], [5, 6]])

# Calculate QR decomposition
Q, R = np.linalg.qr(A)
  1. Solving Linear Programming Problem:
import numpy as np
from scipy.optimize import linprog

c = np.array([-1, 4])  # Coefficients of the objective function
A = np.array([[3, 1], [1, 2]])  # Coefficients of inequality constraints
b = np.array([9, 8])  # Right-hand side of inequality constraints

# Solve linear programming problem
result = linprog(c, A_ub=A, b_ub=b)
  1. Calculating Mahalanobis Distance:
import numpy as np
from scipy.spatial.distance import mahalanobis

x = np.array([1, 2, 3])  # Data point
mu = np.array([0, 0, 0])  # Mean of distribution
cov = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])  # Covariance matrix

# Calculate Mahalanobis distance
distance = mahalanobis(x, mu, np.linalg.inv(cov))
  1. Performing Singular Value Decomposition (SVD):
import numpy as np

A = np.array([[1, 2], [3, 4], [5, 6]])

# Perform Singular Value Decomposition (SVD)
U, S, VT = np.linalg.svd(A)
  1. Calculating Matrix Trace:
import numpy as np

A = np.array([[1, 2], [3, 4]])

# Calculate matrix trace
trace = np.trace(A)
  1. Calculating Entropy:
import numpy as np

# Define probabilities
probabilities = np.array([0.3, 0.5, 0.2])

# Calculate entropy
entropy = -np.sum(probabilities * np.log2(probabilities))
  1. Calculating Mutual Information:
import numpy as np
from sklearn.metrics import mutual_info_score

# Define true labels and predicted labels
true_labels = np.array([0, 1, 0, 1])
predicted_labels = np.array([0, 1, 1, 0])

# Calculate mutual information
mutual_information = mutual_info_score(true_labels, predicted_labels)
  1. Calculating Manhattan (L1) Norm:
import numpy as np

v = np.array([1, -2, 3])

# Calculate Manhattan (L1) norm
manhattan_norm = np.linalg.norm(v, ord=1)
  1. Calculating Euclidean (L2) Norm:
import numpy as np

v = np.array([1, -2, 3])

# Calculate Euclidean (L2) norm
euclidean_norm = np.linalg.norm(v, ord=2)
  1. Calculating Frobenius Norm of a Matrix:
import numpy as np

A = np.array([[1, 2], [3, 4]])

# Calculate Frobenius norm
frobenius_norm = np.linalg.norm(A, ord='fro')
  1. Calculating Kruskal-Wallis H Test:
import numpy as np
from scipy.stats import kruskal

# Define data groups
group1 = np.random.normal(0, 1, 100)
group2 = np.random.normal(1, 1, 100)
group3 = np.random.normal(2, 1, 100)

# Perform Kruskal-Wallis H test
H_statistic, p_value = kruskal(group1, group2, group3)
  1. Calculating Precision and Recall:
import numpy as np
from sklearn.metrics import precision_score, recall_score

# Define true labels and predicted labels
true_labels = np.array([0, 1, 0, 1])
predicted_labels = np.array([0, 1, 1, 0])

# Calculate precision and recall
precision = precision_score(true_labels, predicted_labels)
recall = recall_score(true_labels, predicted_labels)
  1. Calculating F1 Score:
import numpy as np
from sklearn.metrics import f1_score

# Define true labels and predicted labels
true_labels = np.array([0, 1, 0, 1])
predicted_labels = np.array([0, 1, 1, 0])

# Calculate F1 score
f1 = f1_score(true_labels, predicted_labels)
  1. Calculating R2 Score:
import numpy as np
from sklearn.metrics import r2_score

# Define true values and predicted values
true_values = np.array([1, 2, 3, 4])
predicted_values = np.array([1.1, 2.1, 2.9, 4.2])

# Calculate R2 score
r2 = r2_score(true_values, predicted_values)
  1. Calculating Mean Squared Error (MSE):
import numpy as np
from sklearn.metrics import mean_squared_error

# Define true values and predicted values
true_values = np.array([1, 2, 3, 4])
predicted_values = np.array([1.1, 2.1, 2.9, 4.2])

# Calculate Mean Squared Error (MSE)
mse = mean_squared_error(true_values, predicted_values)
  1. Calculating Root Mean Squared Error (RMSE):
import numpy as np
from sklearn.metrics import mean_squared_error

# Define true values and predicted values
true_values = np.array([1, 2, 3, 4])
predicted_values = np.array([1.1, 2.1, 2.9, 4.2])

# Calculate Root Mean Squared Error (RMSE)
rmse = np.sqrt(mean_squared_error(true_values, predicted_values))
  1. Calculating Mean Absolute Error (MAE):
import numpy as np
from sklearn.metrics import mean_absolute_error

# Define true values and predicted values
true_values = np.array([1, 2, 3, 4])
predicted_values = np.array([1.1, 2.1, 2.9, 4.2])

# Calculate Mean Absolute Error (MAE)
mae = mean_absolute_error(true_values, predicted_values)
  1. Finding Local Minima/Maxima of 1D Array:
import numpy as np

# Define 1D array
arr = np.array([1, 2, 3, 2, 1])

# Find local minima and maxima
minima_indices = np.where((arr[:-2] > arr[1:-1]) & (arr[1:-1] < arr[2:]))[0] + 1
maxima_indices = np.where((arr[:-2] < arr[1:-1]) & (arr[1:-1] > arr[2:]))[0] + 1
  1. Calculating Shannon Entropy:
import numpy as np

# Define probabilities
probabilities = np.array([0.3, 0.5, 0.2])

# Calculate Shannon entropy
entropy = -np.sum(probabilities * np.log2(probabilities))
  1. Generating Random Numbers from Custom Distribution:
import numpy as np

# Define custom distribution parameters
a, b = 1, 3

# Generate random numbers from custom distribution
random_numbers = a + (b - a) * np.random.random(1000)
  1. Solving Differential Equations Using odeint:
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

# Define the ODE system
def model(y, t):
    return -y + 1

# Initial condition
y0 = 0

# Time points
t = np.linspace(0, 5, 100)

# Solve the ODE system
y = odeint(model, y0, t)

# Plot the solution
plt.plot(t, y)
plt.xlabel('Time')
plt.ylabel('y(t)')
plt.show()
  1. Calculating Wasserstein Distance:
import numpy as np
from scipy.stats import wasserstein_distance

# Define two distributions
dist1 = np.array([0.1, 0.2, 0.3, 0.4])
dist2 = np.array([0.2, 0.3, 0.4, 0.1])

# Calculate Wasserstein distance
wasserstein_dist = wasserstein_distance(dist1, dist2)
  1. Performing Linear Regression:
import numpy as np
from sklearn.linear_model import LinearRegression

# Generate sample data
X = np.array([[1], [2], [3], [4]])
y = np.array([2, 4, 6, 8])

# Perform linear regression
model = LinearRegression().fit(X, y)
  1. Generating Random Numbers from Normal Distribution:
import numpy as np

# Generate random numbers from normal distribution
random_numbers = np.random.normal(loc=0, scale=1, size=1000)
  1. Calculating Covariance Matrix:
import numpy as np

# Define sample data
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Calculate covariance matrix
cov_matrix = np.cov(data, rowvar=False)
  1. Performing Kernel Density Estimation:
import numpy as np
from sklearn.neighbors import KernelDensity

# Generate sample data
data = np.array([1, 2, 2, 3, 3, 3, 4, 4, 5])

# Perform kernel density estimation
kde = KernelDensity(bandwidth=0.5).fit(data[:, None])
  1. Calculating Mann-Whitney U Test:
import numpy as np
from scipy.stats import mannwhitneyu

# Define sample data
group1 = np.array([1, 2, 3, 4, 5])
group2 = np.array([6, 7, 8, 9, 10])

# Perform Mann-Whitney U test
statistic, p_value = mannwhitneyu(group1, group2)
  1. Performing Kruskal-Wallis H Test with Post-Hoc Analysis:
import numpy as np
from scipy.stats import kruskal
from scikit_posthocs import posthoc_dunn

# Define sample data
group1 = np.array([1, 2, 3, 4, 5])
group2 = np.array([6, 7, 8, 9, 10])
group3 = np.array([11, 12, 13, 14, 15])

# Perform Kruskal-Wallis H test
H_statistic, p_value = kruskal(group1, group2, group3)

# Perform post-hoc Dunn's test
posthoc_results = posthoc_dunn([group1, group2, group3])
  1. Finding the Index of the Maximum Value in an Array:
import numpy as np

# Define array
arr = np.array([5, 2, 8, 4, 6])

# Find the index of the maximum value
max_index = np.argmax(arr)
  1. Finding the Index of the Minimum Value in an Array:
import numpy as np

# Define array
arr = np.array([5, 2, 8, 4, 6])

# Find the index of the minimum value
min_index = np.argmin(arr)
  1. Performing K-Means Clustering:
import numpy as np
from sklearn.cluster import KMeans

# Generate sample data
X = np.array([[1, 2], [2, 3], [8, 7], [10, 8], [12, 10]])

# Perform K-Means clustering
kmeans = KMeans(n_clusters=2).fit(X)
  1. Calculating Expectation and Variance of a Random Variable:
import numpy as np

# Define random variable
X = np.array([1, 2, 3, 4, 5])

# Calculate expectation and variance
expectation = np.mean(X)
variance = np.var(X)
  1. Performing Hierarchical Clustering:
import numpy as np
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt

# Generate sample data
X = np.array([[1, 2], [2, 3], [8, 7], [10, 8], [12, 10]])

# Perform hierarchical clustering
Z = linkage(X, method='ward')

# Plot dendrogram
plt.figure(figsize=(8, 6))
dendrogram(Z)
plt.show()
  1. Generating Random Symmetric Positive-Definite Matrix:
import numpy as np

# Generate random symmetric positive-definite matrix
n = 3  # Size of the matrix
A = np.random.rand(n, n)
symmetric_positive_definite_matrix = np.dot(A, A.T)
  1. Solving Quadratic Programming Problem:
import numpy as np
from scipy.optimize import minimize

# Define quadratic objective function
Q = np.array([[1, 0], [0, 1]])
c = np.array([0, 0])

# Define linear constraints
A = np.array([[1, 1]])
b = np.array([1])

# Solve quadratic programming problem
result = minimize(lambda x: 0.5 * np.dot(x, np.dot(Q, x)) + np.dot(c, x), [0, 0], constraints={'type': 'eq', 'fun': lambda x: np.dot(A, x) - b})
  1. Performing Independent Component Analysis (ICA):
import numpy as np
from sklearn.decomposition import FastICA

# Generate sample data
X = np.random.rand(100, 3)

# Perform Independent Component Analysis (ICA)
ica = FastICA(n_components=3)
components = ica.fit_transform(X)
  1. Calculating Autocorrelation Function:
import numpy as np

# Generate sample data
data = np.random.rand(100)

# Calculate autocorrelation function
autocorrelation = np.correlate(data, data, mode='full')
  1. Calculating Cross-Correlation Function:
import numpy as np

# Generate sample data
x = np.random.rand(100)
y = np.random.rand(100)

# Calculate cross-correlation function
cross_correlation = np.correlate(x, y, mode='full')
  1. Performing Gaussian Mixture Model (GMM) Clustering:
import numpy as np
from sklearn.mixture import GaussianMixture

# Generate sample data
X = np.random.rand(100, 2)

# Perform Gaussian Mixture Model (GMM) clustering
gmm = GaussianMixture(n_components=3)
gmm.fit(X)
  1. Finding Unique Elements and Their Counts in an Array:
import numpy as np

# Define array
arr = np.array([1, 2, 3, 1, 2, 1, 3, 4, 5])

# Find unique elements and their counts
unique_elements, counts = np.unique(arr, return_counts=True)
  1. Performing Bayesian Linear Regression:
import numpy as np
import pymc3 as pm

# Generate sample data
X = np.random.rand(100, 2)
y = np.random.rand(100)

# Perform Bayesian linear regression
with pm.Model() as model:
    intercept = pm.Normal('intercept', mu=0, sigma=1)
    coefficients = pm.Normal('coefficients', mu=0, sigma=1, shape=X.shape[1])
    sigma = pm.HalfNormal('sigma', sigma=1)
    y_pred = intercept + pm.math.dot(X, coefficients)
    likelihood = pm.Normal('y', mu=y_pred, sigma=sigma, observed=y)
    trace = pm.sample(1000)
  1. Performing Bayesian Optimization:
import numpy as np
from scipy.optimize import minimize

# Define objective function
def objective(x):
    return (x - 2) ** 2 + np.random.normal(0, 0.1)

# Perform Bayesian optimization
result = minimize(objective, x0=0)
  1. Performing Singular Spectrum Analysis (SSA):
import numpy as np
from sklearn.decomposition import PCA

# Generate sample data
X = np.random.rand(100, 5)

# Perform Singular Spectrum Analysis (SSA)
pca = PCA(n_components=5)
components = pca.fit_transform(X)
  1. Performing Non-negative Matrix Factorization (NMF):
import numpy as np
from sklearn.decomposition import NMF

# Generate sample data
X = np.random.rand(100, 5)

# Perform Non-negative Matrix Factorization (NMF)
nmf = NMF(n_components=3)
W = nmf.fit_transform(X)
  1. Performing Matrix Factorization Using Alternating Least Squares (ALS):
import numpy as np
from scipy.sparse.linalg import spsolve

# Generate sample data
X = np.random.rand(10, 5)

# Initialize factors
n_factors = 2
P = np.random.rand(X.shape[0], n_factors)
Q = np.random.rand(X.shape[1], n_factors)

# Perform Alternating Least Squares (ALS)
for _ in range(100):
    for i in range(X.shape[0]):
        P[i] = spsolve(np.dot(Q.T, Q), np.dot(X[i], Q))
    for j in range(X.shape[1]):
        Q[j] = spsolve(np.dot(P.T, P), np.dot(X[:, j].T, P))
  1. Calculating Cross-Entropy Loss:
import numpy as np

# Define true and predicted probabilities
true_probs = np.array([0, 1, 0, 0])
predicted_probs = np.array([0.1, 0.8, 0.05, 0.05])

# Calculate cross-entropy loss
cross_entropy = -np.sum(true_probs * np.log(predicted_probs))
  1. Performing Multi-Armed Bandit Simulation:
import numpy as np

# Define bandit arms and their probabilities
arms = np.array([0.1, 0.5, 0.8])
num_trials = 1000

# Perform multi-armed bandit simulation
rewards = []
for _ in range(num_trials):
    chosen_arm = np.random.choice(range(len(arms)), p=arms)
    reward = np.random.random() < arms[chosen_arm]
    rewards.append(reward)
  1. Generating Random Walk:
import numpy as np
import matplotlib.pyplot as plt

# Generate random walk
num_steps = 1000
steps = np.random.choice([-1, 1], size=num_steps)
walk = np.cumsum(steps)

# Plot random walk
plt.plot(walk)
plt.xlabel('Steps')
plt.ylabel('Position')
plt.show()
  1. Calculating Mahalanobis Distance Between Points and a Distribution:
import numpy as np
from scipy.spatial.distance import mahalanobis

# Define distribution parameters
mean = np.array([1, 2])
covariance = np.array([[2, 0.5], [0.5, 1]])

# Generate random points
points = np.random.multivariate_normal(mean, covariance, size=100)

# Calculate Mahalanobis distance
distances = [mahalanobis(point, mean, np.linalg.inv(covariance)) for point in points]
  1. Performing Resampling (Bootstrap):
import numpy as np

# Generate sample data
data = np.random.normal(loc=5, scale=2, size=100)

# Perform resampling (Bootstrap)
resamples = [np.random.choice(data, size=len(data), replace=True) for _ in range(1000)]
  1. Performing Singular Value Thresholding (SVT):
import numpy as np
from scipy.linalg import svd

# Generate sample data
X = np.random.rand(10, 5)

# Perform Singular Value Thresholding (SVT)
U, S, VT = svd(X)
k = 3
S_thresh = np.maximum(S - k, 0)
X_svt = np.dot(U, np.dot(np.diag(S_thresh), VT))
  1. Calculating Jensen-Shannon Divergence:
import numpy as np
from scipy.spatial.distance import jensenshannon

# Define probability distributions
p = np.array([0.4, 0.6])
q = np.array([0.3, 0.7])

# Calculate Jensen-Shannon divergence
js_divergence = jensenshannon(p, q)
  1. Generating Sparse Matrix:
import numpy as np
from scipy.sparse import random

# Generate sparse matrix
sparse_matrix = random(5, 5, density=0.2, format='csr')
  1. Performing Stochastic Gradient Descent (SGD):
import numpy as np
from sklearn.linear_model import SGDRegressor

# Generate sample data
X = np.random.rand(100, 2)
y = np.random.rand(100)

# Perform Stochastic Gradient Descent (SGD)
sgd = SGDRegressor()
sgd.fit(X, y)
  1. Performing Expectation-Maximization (EM) Algorithm:
import numpy as np
from sklearn.mixture import GaussianMixture

# Generate sample data
X = np.random.rand(100, 2)

# Perform Expectation-Maximization (EM)
em = GaussianMixture(n_components=2)
em.fit(X)
  1. Calculating Total Variation Distance:
import numpy as np
from scipy.spatial.distance import variation

# Define probability distributions
p = np.array([0.2, 0.8])
q = np.array([0.3, 0.7])

# Calculate Total Variation distance
tv_distance = variation(p, q)
  1. Calculating Manhattan Distance Matrix:
import numpy as np
from scipy.spatial.distance import pdist, squareform

# Define points
points = np.array([[1, 2], [3, 4], [5, 6]])

# Calculate pairwise Manhattan distance
manhattan_distances = squareform(pdist(points, metric='cityblock'))
  1. Performing Locally Linear Embedding (LLE):
import numpy as np
from sklearn.manifold import LocallyLinearEmbedding

# Generate sample data
X = np.random.rand(100, 3)

# Perform Locally Linear Embedding (LLE)
lle = LocallyLinearEmbedding(n_components=2)
embedded_data = lle.fit_transform(X)
  1. Performing Randomized Singular Value Decomposition (SVD):
import numpy as np
from sklearn.utils.extmath import randomized_svd

# Generate sample data
X = np.random.rand(10, 5)

# Perform Randomized Singular Value Decomposition (SVD)
U, S, VT = randomized_svd(X, n_components=3)
  1. Performing Robust Principal Component Analysis (RPCA):
import numpy as np
from sklearn.decomposition import PCA
from scipy.linalg import svd

# Generate sample data
X = np.random.rand(100, 10)

# Perform Robust Principal Component Analysis (RPCA)
U, S, VT = svd(X)
pca = PCA(n_components=5)
pca.fit(X)
  1. Generating Random Permutation:
import numpy as np

# Generate random permutation
permutation = np.random.permutation(10)

About

The provided numpy code examples cover a wide range of functionalities including statistical calculations (e.g., mean, variance), machine learning algorithms (e.g., clustering, regression), distance metrics (e.g., Jensen-Shannon, Manhattan), and optimization techniques (e.g., stochastic gradient descent).

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published