-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
example: learn two Thompson microphysics functions
- Loading branch information
Showing
4 changed files
with
4,133 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,231 @@ | ||
! Copyright (c), The Regents of the University of California | ||
! Terms of use are as specified in LICENSE.txt | ||
program learn_microphysics_procedures | ||
!! Train a neural network proxies for procedures in the Thompson microphysics model | ||
!! in of ICAR (https://github.com/BerkeleyLab/icar). | ||
use inference_engine_m, only : & | ||
inference_engine_t, trainable_engine_t, mini_batch_t, tensor_t, input_output_pair_t, shuffle, sigmoid_t | ||
use sourcery_m, only : string_t, file_t, command_line_t, bin_t, csv | ||
use assert_m, only : assert, intrinsic_array_t | ||
use thompson_tensors_m, only : y, T, p | ||
use iso_fortran_env, only : int64, output_unit | ||
implicit none | ||
|
||
type(string_t) network_file | ||
type(command_line_t) command_line | ||
integer(int64) counter_start, counter_end, clock_rate | ||
|
||
network_file = string_t(command_line%flag_value("--output-file")) | ||
|
||
if (len(network_file%string())==0) then | ||
error stop new_line('a') // new_line('a') // & | ||
'Usage: ./build/run-fpm.sh run learn_microphysics_procedures -- --output-file "<file-name>"' | ||
end if | ||
|
||
call system_clock(counter_start, clock_rate) | ||
|
||
block | ||
integer, parameter :: max_num_epochs = 10000000, num_mini_batches = 10 | ||
integer num_pairs ! number of input/output pairs | ||
|
||
type(mini_batch_t), allocatable :: mini_batches(:) | ||
type(input_output_pair_t), allocatable :: input_output_pairs(:) | ||
type(tensor_t), allocatable :: inputs(:), desired_outputs(:) | ||
type(trainable_engine_t) trainable_engine | ||
type(bin_t), allocatable :: bins(:) | ||
real, allocatable :: cost(:), random_numbers(:) | ||
integer io_status, network_unit, plot_unit | ||
integer, parameter :: io_success=0, diagnostics_print_interval = 1000, network_save_interval = 10000 | ||
integer, parameter :: nodes_per_layer(*) = [2, 72, 2] | ||
real, parameter :: cost_tolerance = 1.E-08 | ||
|
||
call random_init(image_distinct=.true., repeatable=.true.) | ||
|
||
open(newunit=network_unit, file=network_file%string(), form='formatted', status='old', iostat=io_status, action='read') | ||
|
||
if (io_status == io_success) then | ||
print *,"Reading network from file " // network_file%string() | ||
trainable_engine = trainable_engine_t(inference_engine_t(file_t(network_file))) | ||
close(network_unit) | ||
else | ||
close(network_unit) | ||
print *,"Initializing a new network" | ||
trainable_engine = perturbed_identity_network(perturbation_magnitude=0.05, n = nodes_per_layer) | ||
end if | ||
call output(trainable_engine%to_inference_engine(), string_t("initial-network.json")) | ||
|
||
associate(num_inputs => trainable_engine%num_inputs(), num_outputs => trainable_engine%num_outputs()) | ||
|
||
block | ||
integer i, j | ||
integer, allocatable :: output_sizes(:) | ||
inputs = [( [(tensor_t([T(i), p(j)]), j=1,size(p))], i = 1,size(T))] | ||
num_pairs = size(inputs) | ||
call assert(num_pairs == size(T)*size(p), "train_cloud_microphysics: inputs tensor array complete") | ||
desired_outputs = y(inputs) | ||
output_sizes = [(size(desired_outputs(i)%values()),i=1,size(desired_outputs))] | ||
call assert(all([num_outputs==output_sizes]), "fit-polynomials: # outputs", intrinsic_array_t([num_outputs,output_sizes])) | ||
end block | ||
|
||
input_output_pairs = input_output_pair_t(inputs, desired_outputs) | ||
|
||
block | ||
integer b | ||
bins = [(bin_t(num_items=num_pairs, num_bins=num_mini_batches, bin_number=b), b = 1, num_mini_batches)] | ||
end block | ||
|
||
block | ||
integer e, b, stop_unit, previous_epoch | ||
real previous_clock_time | ||
|
||
call open_plot_file_for_appending("cost.plt", plot_unit, previous_epoch, previous_clock_time) | ||
print *, " Epoch | Cost Function| System_Clock | Nodes per Layer" | ||
allocate(random_numbers(2:size(input_output_pairs))) | ||
|
||
do e = previous_epoch + 1, previous_epoch + max_num_epochs | ||
call random_number(random_numbers) | ||
call shuffle(input_output_pairs, random_numbers) | ||
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))] | ||
call trainable_engine%train(mini_batches, cost, adam=.true.) | ||
call system_clock(counter_end, clock_rate) | ||
|
||
associate( & | ||
cost_avg => sum(cost)/size(cost), & | ||
cumulative_clock_time => previous_clock_time + real(counter_end - counter_start) / real(clock_rate), & | ||
loop_ending => e == previous_epoch + max_num_epochs & | ||
) | ||
write_and_exit_if_converged: & | ||
if (cost_avg < cost_tolerance) then | ||
call print_diagnostics(plot_unit, e, cost_avg, cumulative_clock_time, nodes_per_layer) | ||
call output(trainable_engine%to_inference_engine(), network_file) | ||
exit | ||
end if write_and_exit_if_converged | ||
|
||
open(newunit=stop_unit, file="stop", form='formatted', status='old', iostat=io_status) | ||
|
||
write_and_exit_if_stop_file_exists: & | ||
if (io_status==0) then | ||
call print_diagnostics(plot_unit, e, cost_avg, cumulative_clock_time, nodes_per_layer) | ||
call output(trainable_engine%to_inference_engine(), network_file) | ||
exit | ||
end if write_and_exit_if_stop_file_exists | ||
|
||
if (mod(e,diagnostics_print_interval)==0 .or. loop_ending) & | ||
call print_diagnostics(plot_unit, e, cost_avg, cumulative_clock_time, nodes_per_layer) | ||
if (mod(e,network_save_interval)==0 .or. loop_ending) call output(trainable_engine%to_inference_engine(), network_file) | ||
end associate | ||
end do | ||
|
||
close(plot_unit) | ||
|
||
report_network_performance: & | ||
block | ||
integer p | ||
|
||
associate(network_outputs => trainable_engine%infer(inputs)) | ||
print *," Inputs (normalized) | Outputs | Desired outputs" | ||
do p = 1, num_pairs | ||
print "(6(G13.5,2x))", inputs(p)%values(), network_outputs(p)%values(), desired_outputs(p)%values() | ||
end do | ||
end associate | ||
end block report_network_performance | ||
|
||
end block | ||
|
||
end associate | ||
|
||
call output(trainable_engine%to_inference_engine(), network_file) | ||
|
||
end block | ||
|
||
contains | ||
|
||
subroutine print_diagnostics(plot_file_unit, epoch, cost, clock, nodes) | ||
integer, intent(in) :: plot_file_unit, epoch, nodes(:) | ||
real, intent(in) :: cost, clock | ||
|
||
write(unit=output_unit, fmt='(3(g13.5,2x))', advance='no') epoch, cost, clock | ||
write(unit=output_unit, fmt=csv) nodes | ||
write(unit=plot_file_unit, fmt='(3(g13.5,2x))', advance='no') epoch, cost, clock | ||
write(unit=plot_file_unit, fmt=csv) nodes | ||
end subroutine | ||
|
||
subroutine output(inference_engine, file_name) | ||
type(inference_engine_t), intent(in) :: inference_engine | ||
type(string_t), intent(in) :: file_name | ||
type(file_t) json_file | ||
json_file = inference_engine%to_json() | ||
call json_file%write_lines(file_name) | ||
end subroutine | ||
|
||
pure function e(j,n) result(unit_vector) | ||
integer, intent(in) :: j, n | ||
integer k | ||
real, allocatable :: unit_vector(:) | ||
unit_vector = real([(merge(1,0,j==k),k=1,n)]) | ||
end function | ||
|
||
function perturbed_identity_network(perturbation_magnitude, n) result(trainable_engine) | ||
type(trainable_engine_t) trainable_engine | ||
real, intent(in) :: perturbation_magnitude | ||
integer, intent(in) :: n(:) | ||
integer j, k, l | ||
real, allocatable :: identity(:,:,:), w_harvest(:,:,:), b_harvest(:,:) | ||
|
||
associate(n_max => maxval(n), layers => size(n)) | ||
identity = reshape( [( [(e(k,n_max), k=1,n_max)], l = 1, layers-1 )], [n_max, n_max, layers-1]) | ||
|
||
allocate(w_harvest, mold = identity) | ||
allocate(b_harvest(size(identity,1), size(identity,3))) | ||
|
||
call random_number(w_harvest) | ||
call random_number(b_harvest) | ||
|
||
associate(w => identity + perturbation_magnitude*(w_harvest-0.5)/0.5, b => perturbation_magnitude*(b_harvest-0.5)/0.5) | ||
|
||
trainable_engine = trainable_engine_t( & | ||
nodes = n, weights = w, biases = b, differentiable_activation_strategy = sigmoid_t(), & | ||
metadata = & | ||
[string_t("Thompson microphysics procedures"), string_t("Damian Rouson"), string_t("2023-09-23"), string_t("sigmoid"), & | ||
string_t("false")] & | ||
) | ||
end associate | ||
end associate | ||
end function | ||
|
||
subroutine open_plot_file_for_appending(plot_file_name, plot_unit, previous_epoch, previous_clock) | ||
character(len=*), intent(in) :: plot_file_name | ||
integer, intent(out) :: plot_unit, previous_epoch | ||
real, intent(out) :: previous_clock | ||
|
||
type(file_t) plot_file | ||
type(string_t), allocatable :: lines(:) | ||
character(len=:), allocatable :: last_line | ||
integer io_status | ||
integer, parameter :: io_success = 0 | ||
logical preexisting_plot_file | ||
real cost | ||
|
||
inquire(file=plot_file_name, exist=preexisting_plot_file) | ||
open(newunit=plot_unit,file="cost.plt",status="unknown",position="append") | ||
|
||
associate(header => " Epoch | Cost Function| System_Clock | Nodes per Layer") | ||
if (.not. preexisting_plot_file) then | ||
write(plot_unit,*) header | ||
previous_epoch = 0 | ||
previous_clock = 0 | ||
else | ||
plot_file = file_t(string_t(plot_file_name)) | ||
lines = plot_file%lines() | ||
last_line = lines(size(lines))%string() | ||
read(last_line,*, iostat=io_status) previous_epoch, cost, previous_clock | ||
if ((io_status /= io_success .and. last_line == header) .or. len(trim(last_line))==0) then | ||
previous_epoch = 0 | ||
previous_clock = 0 | ||
end if | ||
end if | ||
end associate | ||
|
||
end subroutine | ||
|
||
end program |
Oops, something went wrong.