This is the authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations
- Download openpose pretrained model
- openpose_pose_coco.prototxt
- pose_iter_440000.caffemodel
- Run Inference
python bin/demo.py sample/image.png --lift_model sample/gen_epoch_500.npz --model2d pose_iter_440000.caffemodel --proto2d openpose_pose_coco.prototxt
- Need OpenCV >= 3.4
- < 3.3 results extreamly wrong estimation
- Python 3.6.5
- Cupy 4.0.0
- Chainer 4.0.0
- OpenCV 3.4 (when showing results)
- git-lfs
- to download pre-trained model
- or you can download pre-trained model directory from https://github.com/DwangoMediaVillage/3dpose_gan/blob/master/sample/gen_epoch_500.npz?raw=true
-
Unsupervised learning of 3D points from ground truth 2D points
python bin/train.py --gpu 0 --mode unsupervised --dataset h36m --use_heuristic_loss
-
Unsupervised learning of 3D points from detected 2D points by Stacked Hourglass
TBA
-
Supervised learning of 3D points from ground truth 2D points
python bin/train.py --gpu 0 --mode supervised --activate_func relu --use_bn
TBA
TBA
python bin/eval.py results/hoge/gen_epoch_*.npz