Skip to content

INT8 calibrator for ONNX model with dynamic batch_size at the input and NMS module at the output. C++ Implementation.

Notifications You must be signed in to change notification settings

Egorundel/int8_calibrator_cpp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

INT8 Calibrator (C++ Implementation)

Description

INT8 calibrator for ONNX model with dynamic batch_size at the input and NMS module at the output.

I am creating an INT8 calibrator in C++. Used nvinfer1::IInt8EntropyCalibrator2. I calibrate the ONNX model, generate the calibration_data.cache calibration file, and then create the TensorRT Engine using calibration.

I am using the ONNX model with a dynamic batch size at the input.

ATTENTION!

Pay attention to your model input. This calibrator is suitable for models with input format: batch_size * number_of_channels * width * height.

To view what is at the input and output of your model, use the service: Netron

The input of our model has the following parameters: dynamic batch size * 3 * 640 * 640

batch_size = -1 (dynamic)
number_of_channels = 3
width = 640
height = 640

input

The output of my model is an NMS Module with 4 outputs: num_dets, boxes, scores, labels.

output

What you need to change in code for you?

  1. path to ONNX model (main.cpp)

    const char* pathToOnnx = "../onnx_model/yolov8m.onnx";
  2. batch size, input size and name of input node in model (main.cpp)

    Int8EntropyCalibrator calibrator(
       	6, // batch size for calibration 
        sizeList, // sizes of Dims
        network->getInput(0)->getDimensions().d[2], // input_w_
        network->getInput(0)->getDimensions().d[3], // input_h_
        calibrationImagesDir, // img_dir with images for calibration
        cacheFile, // name of cache file
        network->getInput(0)->getName() // image of input tensor
    );
  3. paths to calibration data (data.txt, which contains the paths to the images - about 1000+ photos from train dataset) and where you want to save a calibration_data.cache (main.cpp)

    const char* calibrationImagesDir = "../data/";
    const char* cacheFile = "calibration_data.cache";
  4. change a parameters for dynamic batch (main.cpp)

    profile->setDimensions(network->getInput(0)->getName(), nvinfer1::OptProfileSelector::kMIN, nvinfer1::Dims4{1, 3, network->getInput(0)->getDimensions().d[2], network->getInput(0)->getDimensions().d[3]});
    profile->setDimensions(network->getInput(0)->getName(), nvinfer1::OptProfileSelector::kOPT, nvinfer1::Dims4{6, 3, network->getInput(0)->getDimensions().d[2], network->getInput(0)->getDimensions().d[3]});
    profile->setDimensions(network->getInput(0)->getName(), nvinfer1::OptProfileSelector::kMAX, nvinfer1::Dims4{12, 3, network->getInput(0)->getDimensions().d[2], network->getInput(0)->getDimensions().d[3]});
  5. path where you want to save engine (main.cpp)

    const char* pathToEngine = "./yolov8m.engine";

How to launch?

# download repository
git clone https://github.com/Egorundel/int8_calibrator_cpp.git

# go to downloaded repository
cd int8_calibrator_cpp

# create `build` folder and go to her
mkdir build && cd build

# cmake 
cmake ..

# build it
cmake --build .
# or
make -j$(nproc)

# launch
./int8_calibrator_cpp

Screenshot of work:

screenshot_of_working_code

They were used as a basis:

  1. https://github.com/cyberyang123/Learning-TensorRT/tree/main/yolov8_accelerate
  2. https://github.com/wang-xinyu/tensorrtx/tree/master/yolov9

Tested on:

TensorRT Version: 8.6.1.6
NVIDIA GPU: RTX 3060
NVIDIA Driver Version: 555.42.02
CUDA Version: 11.1
CUDNN Version: 8.0.6

Star History

Star History Chart

About

INT8 calibrator for ONNX model with dynamic batch_size at the input and NMS module at the output. C++ Implementation.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published