Skip to content

Analysis of Michaelis–Menten enzyme kinetics using the Lineweaver–Burk plot

License

Notifications You must be signed in to change notification settings

EriEdF/Simple-Lineweaver-Burk

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Simple-Lineweaver–Burk

Analysis of Michaelis–Menten enzyme kinetics using the Lineweaver–Burk equation. Plots the Lineweaver–Burk graph using linear regression and estimates Km + Vmax.

Example Output:

sample_output

Km: 0.000141811172810182
Vmax: 0.2536312215910251

Coefficient of determination: 0.995776951975508

Installation and usage

Requires

  • Python 3
  • Pandas
  • Numpy
  • Matplotlib
  • Scikit-learn

Install python dependencies:

# using pip package manager
$ pip install pandas numpy matplotlib sklearn

Save your data as .csv file. Place the substrate concentration in the 'cS' column and reaction rate in the 'v' column (Example: /sample_data/sample_data.csv ):

cS v
0.0035 50
0.0065 80
... ...

Input your data as an argument (or run without to use sample_data.csv)

# run with your data
$ python main.py `your_data.csv`

# run with sample_data
$ python main.py

About

Analysis of Michaelis–Menten enzyme kinetics using the Lineweaver–Burk plot

Topics

Resources

License

Stars

Watchers

Forks

Languages