Skip to content

F-a-b-r-i-z-i-o/Ant_Colony_Optimization_for_Evrptw

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Ant Colony Optimization for EVRPTW 🌐

Welcome Ant Colony Optimization (ACO) project, where advanced algorithms and electric vehicles meet to solve the Electric Vehicle Routing Problem with Time Windows (EVRPTW). 🚚⏱️

Project Overview 📜

This repository contains a Python-based implementation of ACO algorithms, designed to optimize routing paths for electric vehicles considering specific time windows and recharging requirements.

Documentation 📖

For more detailed information and usage instructions, check out our documentation.

Installation and Dependencies 🔧

Ensure Python is installed along with the following packages:

  • numpy
  • dask
  • pandas
  • yaml
  • csv

Steps for Installation:

  1. Clone the Repository:
    • Use the command git clone https://github.com/F-a-b-r-i-z-i-o/Ant_Colony_Optimization_for_Evrptw.git to clone the EVRPTW repository to your local machine.
  2. Create and Activate Virtual Environment:
    • Navigate to the EVRPTW directory (cd EVRPTW).
    • Create a virtual environment named env within this directory. Use the command python3 -m venv env.
    • Activate the virtual environment using the script.sh script with the command . ./active_venv.sh.
  3. Install Dependencies:
    • Install required dependencies by executing pip3 install -r requirements.txt. This will install all the necessary packages as listed in the requirements.txt file.

By following these steps, you'll set up the necessary environment to run the Ant Colony Optimization simulations for EVRPTW.

Results 📊

CPLEX vs MACS vs ACSD BEST VALUES FOUND

E-VRPTW CPLEX best secs MACS best secs ACSD best secs $\Delta%$
C101-5 257.75 81 257.75 0.002 N/A 0.0 0.0
C103-5 176.05 5 176.05 0.21 N/A 0.0 0.0
C206-5 242.55 518 242.55 0.008 242.55 0.47 0.0
C208-5 158.48 15 158.48 0.0002 158.48 0.037 0.0
R104-5 136.69 1 136.69 0.005 140.28 0.0351 2.26
R105-5 156.08 3 156.08 0.001 156.08 0.082 0.0
R202-5 128.78 1 128.78 0.08 128.28 0.97 0.0
R203-5 179.06 5 179.06 1.11 197.77 1.79 10.44
RC105-5 241.30 764 241.30 2.37 241.30 5.87 0.0
RC108-5 253.93 311 253.93 0.002 253.93 0.057 0.0
RC204-5 176.39 54 176.39 0.001 179.81 0.089 1.93
RC208-5 167.98 21 167.98 0.003 181.67 0.034 8.15
C101-10 393.76 171 393.76 4.53 N/A 0.0 0.0
C104-10 273.93 360 273.93 24.1 N/A 0.0 0.0
C202-10 304.06 300 304.06 2.85 304.06 4.90 0.0
C205-10 228.28 4 228.28 20.70 287.29 93.89 25.84
R102-10 249.19 389 249.19 1.57 268.87 20.87 7.89
R103-10 207.05 119 207.05 13.50 207.05 35.68 0.0
R201-10 241.51 177 241.51 1.14 246.63 13.89 2.11
R203-10 218.21 573 218.21 15.45 302.78 56.89 38.75
RC102-10 423.51 810 423.51 11.85 423.51 78.98 0.0
RC108-10 345.93 39 345.93 7.99 398.87 30.87 15.30
RC201-10 412.86 7200 412.86 0.02 412.86 89.67 0.0
RC205-10 325.98 399 325.98 25.57 N/A 0.0 0.0
C103-15 348.29 7200 348.29 24.36 N/A 0.0 0.0
C106-15 275.13 17 275.13 21.88 N/A 0.0 0.0
C202-15 383.62 7200 383.62 59.46 555.58 363.68 44.82
C208-15 300.55 5060 300.55 44.1 398.63 237.87 32.63
R102-15 413.93 7200 413.93 25.84 415.15 234.68 0.29
R105-15 336.15 7200 336.15 13.42 403.20 398.78 19.95
R202-15 358.00 7200 358.00 7.32 400.26 287.89 11.80
R209-15 313.24 7200 313.24 9.01 444.78 345.89 41.99
RC103-15 397.67 7200 397.67 24.52 500.12 456.82 25.76
RC108-15 370.25 7200 370.25 26.96 467.86 554.89 26.36
RC202-15 394.39 7200 394.39 73.38 467.56 556.98 18.55
RC204-15 407.45 7200 382.22 15.51 409.89 666.89 7.23

Note: "N/A" indicates that the instance does not generate eligible solutions.

Other results are available Results

Path Visualization 🔄

Path Evolution

Fitness Trend Graph 📉

Fitness Trend

Paper Citations 📄

  • Michalis Mavrovouniotis. "A Multiple Ant Colony System for the Electric Vehicle Routing Problem with Time Windows". KIOS Research and Innovation Center of Excellence, Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus. View Paper.

Contributing 🤝

Contributions to enhance the project are welcome. Please feel free to fork the repository, make improvements, and submit pull requests.

License 📄

This project is released under MIT License.


Enjoy 2F_