Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: Reuse computeSinglePhaseFlux #3283

Merged
merged 8 commits into from
Aug 22, 2024
158 changes: 29 additions & 129 deletions src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseFVMKernels.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,14 @@
#include "physicsSolvers/fluidFlow/SinglePhaseBaseFields.hpp"
#include "physicsSolvers/fluidFlow/SinglePhaseBaseKernels.hpp"
#include "physicsSolvers/fluidFlow/StencilAccessors.hpp"
#include "physicsSolvers/fluidFlow/FluxKernelsHelper.hpp"

namespace geos
{

namespace singlePhaseFVMKernels
{
using namespace fluxKernelsHelper;
CusiniM marked this conversation as resolved.
Show resolved Hide resolved

/******************************** FaceBasedAssemblyKernelBase ********************************/

Expand Down Expand Up @@ -345,135 +347,33 @@ class FaceBasedAssemblyKernel : public FaceBasedAssemblyKernelBase
{
for( k[1] = k[0] + 1; k[1] < stack.numFluxElems; ++k[1] )
{
// clear working arrays
real64 densMean = 0.0;
real64 dDensMean_dP[2]{0.0, 0.0};

// create local work arrays
real64 fluxVal = 0.0;
real64 dFlux_dP[2]{0.0, 0.0};

real64 const trans[2] = { stack.transmissibility[connectionIndex][0], stack.transmissibility[connectionIndex][1] };
real64 const dTrans_dP[2] = { stack.dTrans_dPres[connectionIndex][0], stack.dTrans_dPres[connectionIndex][1] };

real64 presGrad = 0.0;
real64 dPresGrad_dP[2]{0.0, 0.0};

real64 gravHead = 0.0;
real64 dGravHead_dP[2]{0.0, 0.0};

localIndex const seri[2] = {m_seri( iconn, k[0] ), m_seri( iconn, k[1] )};
localIndex const sesri[2] = {m_sesri( iconn, k[0] ), m_sesri( iconn, k[1] )};
localIndex const sei[2] = {m_sei( iconn, k[0] ), m_sei( iconn, k[1] )};

// calculate quantities on primary connected cells
for( integer ke = 0; ke < 2; ++ke )
{
// density
real64 const density = m_dens[seri[ke]][sesri[ke]][sei[ke]][0];
real64 const dDens_dP = m_dDens_dPres[seri[ke]][sesri[ke]][sei[ke]][0];

// average density and derivatives
densMean += 0.5 * density;
dDensMean_dP[ke] = 0.5 * dDens_dP;
}

//***** calculation of flux *****

// compute potential difference
real64 potScale = 0.0;
real64 dPresGrad_dTrans = 0.0;
real64 dGravHead_dTrans = 0.0;
int signPotDiff[2] = {1, -1};

for( integer ke = 0; ke < 2; ++ke )
{
localIndex const er = seri[ke];
localIndex const esr = sesri[ke];
localIndex const ei = sei[ke];

real64 const pressure = m_pres[er][esr][ei];
presGrad += trans[ke] * pressure;
dPresGrad_dTrans += signPotDiff[ke] * pressure;
dPresGrad_dP[ke] = trans[ke];

real64 const gravD = trans[ke] * m_gravCoef[er][esr][ei];
real64 const pot = trans[ke] * pressure - densMean * gravD;

gravHead += densMean * gravD;
dGravHead_dTrans += signPotDiff[ke] * densMean * m_gravCoef[er][esr][ei];

for( integer i = 0; i < 2; ++i )
{
dGravHead_dP[i] += dDensMean_dP[i] * gravD;
}

potScale = fmax( potScale, fabs( pot ) );
}

for( integer ke = 0; ke < 2; ++ke )
{
dPresGrad_dP[ke] += dTrans_dP[ke] * dPresGrad_dTrans;
dGravHead_dP[ke] += dTrans_dP[ke] * dGravHead_dTrans;
}

// *** upwinding ***

// compute potential gradient
real64 const potGrad = presGrad - gravHead;

// compute upwinding tolerance
real64 constexpr upwRelTol = 1e-8;
real64 const upwAbsTol = fmax( potScale * upwRelTol, LvArray::NumericLimits< real64 >::epsilon );

// decide mobility coefficients - smooth variation in [-upwAbsTol; upwAbsTol]
real64 const alpha = ( potGrad + upwAbsTol ) / ( 2 * upwAbsTol );

// choose upstream cell
real64 mobility{};
real64 dMob_dP[2]{};
if( alpha <= 0.0 || alpha >= 1.0 )
{
localIndex const k_up = 1 - localIndex( fmax( fmin( alpha, 1.0 ), 0.0 ) );

mobility = m_mob[seri[k_up]][sesri[k_up]][sei[k_up]];
dMob_dP[k_up] = m_dMob_dPres[seri[k_up]][sesri[k_up]][sei[k_up]];
}
else
{
real64 const mobWeights[2] = { alpha, 1.0 - alpha };
for( integer ke = 0; ke < 2; ++ke )
{
mobility += mobWeights[ke] * m_mob[seri[ke]][sesri[ke]][sei[ke]];
dMob_dP[ke] = mobWeights[ke] * m_dMob_dPres[seri[ke]][sesri[ke]][sei[ke]];
}
}

// pressure gradient depends on all points in the stencil
for( integer ke = 0; ke < 2; ++ke )
{
dFlux_dP[ke] += dPresGrad_dP[ke];
}

// gravitational head depends only on the two cells connected (same as mean density)
for( integer ke = 0; ke < 2; ++ke )
{
dFlux_dP[ke] -= dGravHead_dP[ke];
}

// compute the flux and derivatives using upstream cell mobility
fluxVal = mobility * potGrad;

for( integer ke = 0; ke < 2; ++ke )
{
dFlux_dP[ke] *= mobility;
}

// add contribution from upstream cell mobility derivatives
for( integer ke = 0; ke < 2; ++ke )
{
dFlux_dP[ke] += dMob_dP[ke] * potGrad;
}
real64 dFlux_dTrans = 0.0;
real64 alpha = 0.0;
real64 mobility = 0.0;
real64 potGrad = 0.0;
real64 trans[2] = {stack.transmissibility[connectionIndex][0], stack.transmissibility[connectionIndex][1]};
real64 dTrans[2] = { stack.dTrans_dPres[connectionIndex][0], stack.dTrans_dPres[connectionIndex][1] };
real64 dFlux_dP[2] = {0.0, 0.0};
localIndex const regionIndex[2] = {m_seri( iconn, k[0] ), m_seri( iconn, k[1] )};
localIndex const subRegionIndex[2] = {m_sesri( iconn, k[0] ), m_sesri( iconn, k[1] )};
localIndex const elementIndex[2] = {m_sei( iconn, k[0] ), m_sei( iconn, k[1] )};

computeSinglePhaseFlux( regionIndex, subRegionIndex, elementIndex,
trans,
dTrans,
m_pres,
m_gravCoef,
m_dens,
m_dDens_dPres,
m_mob,
m_dMob_dPres,
alpha,
mobility,
potGrad,
fluxVal,
dFlux_dP,
dFlux_dTrans );

// populate local flux vector and derivatives
stack.localFlux[k[0]*numEqn] += m_dt * fluxVal;
Expand All @@ -487,7 +387,7 @@ class FaceBasedAssemblyKernel : public FaceBasedAssemblyKernelBase
}

// Customize the kernel with this lambda
kernelOp( k, seri, sesri, sei, connectionIndex, alpha, mobility, potGrad, fluxVal, dFlux_dP );
kernelOp( k, regionIndex, subRegionIndex, elementIndex, connectionIndex, alpha, mobility, potGrad, fluxVal, dFlux_dP );

connectionIndex++;
}
Expand Down
Loading