-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
62 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
#!/usr/bin/env python | ||
|
||
'''tax_predict_vConTACT2.0.11.3.py | ||
Generate viral taxonomy predictions for each contig based on guilt-by-association-clustering results from vConTACT2. | ||
- Developed based on output from vConTACT2.0.11.3. | ||
Optional parameters: | ||
--vcontact2_results (-i) genome_by_genome_overview.csv : output file from vcontact2. Default = './genome_by_genome_overview.csv' | ||
--output_path (-o) output directory : Path for output directory. Default = './' | ||
''' | ||
|
||
from argparse import ArgumentParser | ||
import pandas as pd | ||
import numpy as np | ||
|
||
parser = ArgumentParser() | ||
parser.add_argument("-i", "--vcontact2_results", dest="infile", | ||
help="Output file from vcontact2: genome_by_genome_overview.csv", | ||
metavar='vcontact2 genome_by_genome_overview.csv', required=True) | ||
parser.add_argument("-o", "--output_path", dest="outpath", | ||
help="Path/to/output/directory. Default = current directory", | ||
metavar='output_path', default='.') | ||
args = parser.parse_args() | ||
|
||
def main(): | ||
print("\n--------------------\r\n") | ||
print("Running tax_predict.py\r\n") | ||
## Read in vcontact2 results | ||
df = pd.read_csv(args.infile) | ||
df.columns = df.columns.str.replace(' ', '_') | ||
# Add subcluster column, and strip subcluster string ('_n') from VC column | ||
df['VC_Subcluster'] = df['VC'] | ||
df['VC'] = df['VC'].str.replace(r'(VC_.*)_.*', r'\1') | ||
## Generate taxonomy predictions for each viral cluster (one set for cluster, one set for subcluster) | ||
# For each taxonomic rank: Groupby viral cluster (VC), generate list of unique taxonomies associated with that cluster (excluding 'Unassigned'), add <rank>_VC_predicted to each contig in that cluster. | ||
# Replace instances of no predicted taxonomy for viral cluster (empty lists in predicted taxonomy column) with 'Unassigned' | ||
for taxa in ['Order', 'Family', 'Genus']: | ||
for VC_group in ['VC', 'VC_Subcluster']: | ||
df = df.join(df.groupby(by=VC_group)[taxa].apply(lambda s: list({x for x in s if x != "Unassigned"})), on=VC_group, rsuffix='_'+VC_group+'_predicted') | ||
df[taxa+'_'+VC_group+'_predicted'] = df[taxa+'_'+VC_group+'_predicted'].where(df[taxa+'_'+VC_group+'_predicted'].str.len() > 0, 'Unassigned') | ||
## Add taking into account p-values or confidence scores? | ||
# | ||
## Write out tables | ||
# genome_by_genome | ||
df.to_csv(args.outpath+'/genome_by_genome_overview_tax_predictions.tsv', sep='\t', index=False) | ||
# tax predictions | ||
subset_columns = ['Genome', 'Order_VC_predicted', 'Family_VC_predicted', 'Genus_VC_predicted', 'Order_VC_Subcluster_predicted', 'Family_VC_Subcluster_predicted', 'Genus_VC_Subcluster_predicted', 'VC', 'VC_Subcluster', 'VC_Status'] | ||
df[subset_columns].to_csv(args.outpath+'/tax_predict_table.tsv', sep='\t', index=False) | ||
print("Output:\r\n") | ||
print(args.outpath+"/tax_predict_table.tsv:\nTable of predicted taxonomy for all contigs\r\n") | ||
print(args.outpath+"/genome_by_genome_overview_tax_predictions.tsv:\nReproduced genome_by_genome_overview table with the addition of predicted taxonomy for all contigs\r\n") | ||
print("Completed tax_predict.py\r\n") | ||
print("\n--------------------\r\n") | ||
|
||
|
||
if __name__ == '__main__': | ||
main() | ||
|