- This toolbox offers a Henry Gas Solubility Optimization ( HGSO ) method
- The
Main
file illustrates the example of how HGSO can solve the feature selection problem using benchmark data-set.
feat
: feature vector ( Instances x Features )label
: label vector ( Instances x 1 )N
: number of gasmax_Iter
: maximum number of iterationsnum_clus
: Number of gas typesK
: Constantalpha
: Influence of other gasbeta
: ConstantL1
: Initial parameterL2
: Initial parameterL3
: Initial parameter
sFeat
: selected featuresSf
: selected feature indexNf
: number of selected featurescurve
: convergence curve
% Benchmark data set
load ionosphere.mat;
% Set 20% data as validation set
ho = 0.2;
% Hold-out method
HO = cvpartition(label,'HoldOut',ho);
% Parameter setting
N = 10;
max_Iter = 100;
num_clus = 2; % number of gas types / cluster
K = 1; % constant
alpha = 1; % influence of other gas
beta = 1; % constant
L1 = 5E-3;
L2 = 100;
L3 = 1E-2;
% Henry Gas Solubility Optimization
[sFeat,Sf,Nf,curve] = jHGSO(feat,label,N,max_Iter,num_clus,K,alpha,beta,L1,L2,L3,HO);
% Plot convergence curve
plot(1:max_Iter,curve);
xlabel('Number of iterations');
ylabel('Fitness Value');
title('HGSO'); grid on;
- MATLAB 2014 or above
- Statistics and Machine Learning Toolbox