Skip to content

JonatasFontele/aprendizagem-de-maquina-e-mineracao-de-dados

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Aprendizagem-de-Maquina-e-Mineracao-de-Dados

Discipline of Machine Learning and Data Mining at the university

License: MIT Open Source

Discipline ipynb

Self study ipynb

  • data_visualizations.ipynb

    • Getting the data.
    • Line plot.
    • Axis labels and title.
    • Second line.
    • Legend.
    • Gridlines.
    • Text.
    • Size of x ticks and y ticks.
  • human_bacteria_genome_comparison.ipynb

    • Comparison of two DNA sequences: (1) human; vs. (2) bacteria.
  • distance_metrics_in_machine_learning.ipynb

    • Continuous or numerical variables.
      • Euclidean Distance.
      • Manhattan Distance.
      • Minkowski Distance.
      • Vector Norm.
        • Vector L1 Norm
        • Vector L2 Norm
        • Vector Lp Norm
    • Categorical variables.
      • Hamming Distance.
      • Cosine Distance & Cosine Similarity
    • Bonus.
      • CountVectorizer.
  • brazilian_population_growth_visualization.ipynb

    • Data Visualization with Python.
      • Visualize Data with Python.
      • Get to know the MATPLOTLIB PYPLOT library.
      • Build line, bar, scatter and boxplot charts.
      • Manipulate data to build graphs.
    • Predicting.
      • Predicting population growth using a very simple datasus data.
      • Comparing to complex IBGE prediction through ploting.
  • iris_flower_species_KNN.ipynb

    • Famous Iris Flower Species Dataset.
      • The Iris Flower Dataset involves predicting the flower species given measurements of iris flowers.
      • It is a multiclass classification problem. The number of observations for each class is balanced.
      • Solve it in 3 steps: Calculate Euclidean Distance; Get Nearest Neighbors (KNN) and Make Predictions.

Releases

No releases published

Packages

No packages published