Skip to content

Josequinteromuentes/gfwr

 
 

Repository files navigation

gfwr: Access data from Global Fishing Watch APIs

DOI Project Status: Active - The project has reached a stable, usable state and is being actively developed. Licence :registry status badge

Important
This version of gfwr gives access to Global Fishing Watch API version 3. Starting April 30th, 2024, this is the official API version. To install the previous version that communicated with API version 2, please refer to branch APIv2 in this repository. remotes::install_github("GlobalFishingWatch/gfwr", ref = "APIv2")

The gfwr R package is a simple wrapper for the Global Fishing Watch (GFW) APIs. It provides convenient functions to freely pull GFW data directly into R in tidy formats.

The package currently works with the following APIs:

  • Vessels API: vessel search and identity based on AIS self reported data and public registry information
  • Events API: encounters, loitering, port visits, AIS-disabling events and fishing events based on AIS data
  • Gridded fishing effort (4Wings API): apparent fishing effort based on AIS data

Note: See the Terms of Use page for GFW APIs for information on our API licenses and rate limits.

Installation

You can install the most recent version of gfwr using:

# Check/install remotes
if (!require("remotes"))
  install.packages("remotes")

remotes::install_github("GlobalFishingWatch/gfwr")

gfwr is also in the rOpenSci R-universe, and can be installed like this:

install.packages("gfwr", 
                 repos = c("https://globalfishingwatch.r-universe.dev",
                           "https://cran.r-project.org"))

Once everything is installed, you can load and use gfwr in your scripts with library(gfwr)

library(gfwr)

Authorization

The use of gfwr requires a GFW API token, which users can request from the GFW API Portal. Save this token to your .Renviron file using usethis::edit_r_environ() and adding a variable named GFW_TOKEN to the file (GFW_TOKEN="PASTE_YOUR_TOKEN_HERE"). Save the .Renviron file and restart the R session to make the edit effective.

Then use the gfw_auth() helper function to inform the key on your function calls. You can use gfw_auth() directly or save the information to an object in your R workspace every time and pass it to subsequent gfwr functions.

So you can do:

key <- gfw_auth()

or this

key <- Sys.getenv("GFW_TOKEN")

Note: gfwr functions are set to use key = gfw_auth() by default.

Vessels API

The get_vessel_info() function allows you to get vessel identity details from the GFW Vessels API.

There are two search types: search, and id.

  • search is performed by using parameters query for basic searches and where for advanced searchers using SQL expressions
    • query takes a single identifier that can be the MMSI, IMO, callsign, or shipname as input and identifies all vessels that match.
    • where search allows for the use of complex search with logical clauses (AND, OR) and fuzzy matching with terms such as LIKE, using SQL syntax (see examples in the function)
    • includes adds information from public registries. Options are “MATCH_CRITERIA”, “OWNERSHIP” and “AUTHORIZATIONS”

Examples

To get information of a vessel using its MMSI, IMO number, callsign or name, the search can be done directly using the number or the string. For example, to look for a vessel with MMSI = 224224000:

get_vessel_info(query = 224224000,
                search_type = "search",
                key = key)
#> $dataset
#> # A tibble: 1 × 1
#>   dataset                                
#>   <chr>                                  
#> 1 public-global-vessel-identity:v20231026
#> 
#> $registryInfoTotalRecords
#> # A tibble: 1 × 1
#>   registryInfoTotalRecords
#>                      <int>
#> 1                        1
#> 
#> $registryInfo
#> # A tibble: 1 × 15
#>   id                    sourceCode ssvid flag  shipname nShipname callsign imo  
#>   <chr>                 <list>     <chr> <chr> <chr>    <chr>     <chr>    <chr>
#> 1 e0c9823749264a129d6b… <chr [6]>  2242… ESP   AGURTZA… AGURTZAB… EBSJ     8733…
#> # ℹ 7 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> #   transmissionDateTo <chr>, geartypes <list>, lengthM <dbl>, tonnageGt <int>,
#> #   vesselInfoReference <chr>
#> 
#> $registryOwners
#> # A tibble: 2 × 6
#>   name             flag  ssvid     sourceCode dateFrom             dateTo       
#>   <chr>            <chr> <chr>     <list>     <chr>                <chr>        
#> 1 JEALSA RIANXEIRA ESP   306118000 <chr [1]>  2019-10-15T12:47:53Z 2023-09-15T1…
#> 2 JEALSA RIANXEIRA ESP   224224000 <chr [1]>  2015-10-13T16:06:33Z 2019-10-15T0…
#> 
#> $registryPublicAuthorizations
#> # A tibble: 4 × 4
#>   dateFrom             dateTo               ssvid     sourceCode
#>   <chr>                <chr>                <chr>     <list>    
#> 1 2019-10-15T00:00:00Z 2023-02-01T00:00:00Z 306118000 <chr [1]> 
#> 2 2018-01-09T00:00:00Z 2019-10-24T00:00:00Z 224224000 <chr [1]> 
#> 3 2012-01-01T00:00:00Z 2019-01-01T00:00:00Z 224224000 <chr [1]> 
#> 4 2014-03-11T00:00:00Z 2016-07-28T00:00:00Z 224224000 <chr [1]> 
#> 
#> $combinedSourcesInfo
#> # A tibble: 2 × 9
#>   vesselId  geartypes_geartype_n…¹ geartypes_geartype_s…² geartypes_geartype_y…³
#>   <chr>     <chr>                  <chr>                                   <int>
#> 1 6632c9eb… PURSE_SEINE_SUPPORT    GFW_VESSEL_LIST                          2019
#> 2 3c99c326… PURSE_SEINE_SUPPORT    GFW_VESSEL_LIST                          2015
#> # ℹ abbreviated names: ¹​geartypes_geartype_name, ²​geartypes_geartype_source,
#> #   ³​geartypes_geartype_yearFrom
#> # ℹ 5 more variables: geartypes_geartype_yearTo <int>,
#> #   shiptypes_shiptype_name <chr>, shiptypes_shiptype_source <chr>,
#> #   shiptypes_shiptype_yearFrom <int>, shiptypes_shiptype_yearTo <int>
#> 
#> $selfReportedInfo
#> # A tibble: 2 × 13
#>   vesselId         ssvid shipname nShipname flag  callsign imo   messagesCounter
#>   <chr>            <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#> 1 6632c9eb8-8009-… 3061… AGURTZA… AGURTZAB… BES   PJBL     8733…        21772378
#> 2 3c99c326d-dd2e-… 2242… AGURTZA… AGURTZAB… ESP   EBSJ     8733…         1887249
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>

To do more specific searches (imo = '8300949'), combine different fields (imo = '8300949' AND ssvid = '214182732') and do fuzzy matching ("shipname LIKE '%GABU REEFE%' OR imo = '8300949'"), use parameter where instead of query:

get_vessel_info(where = "shipname LIKE '%GABU REEFE%' OR imo = '8300949'",
                search_type = "search",
                key = key)
#> $dataset
#> # A tibble: 1 × 1
#>   dataset                                
#>   <chr>                                  
#> 1 public-global-vessel-identity:v20231026
#> 
#> $registryInfoTotalRecords
#> # A tibble: 1 × 1
#>   registryInfoTotalRecords
#>                      <int>
#> 1                        1
#> 
#> $registryInfo
#> # A tibble: 1 × 15
#>   id                    sourceCode ssvid flag  shipname nShipname callsign imo  
#>   <chr>                 <list>     <chr> <chr> <chr>    <chr>     <chr>    <chr>
#> 1 b16ca93ea690fc725e92… <chr [2]>  6135… CMR   GABU RE… GABUREEF… TJMC996  8300…
#> # ℹ 7 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> #   transmissionDateTo <chr>, geartypes <list>, lengthM <dbl>, tonnageGt <int>,
#> #   vesselInfoReference <chr>
#> 
#> $registryOwners
#> # A tibble: 3 × 6
#>   name                   flag  ssvid     sourceCode dateFrom             dateTo 
#>   <chr>                  <chr> <chr>     <list>     <chr>                <chr>  
#> 1 FISHING CARGO SERVICES PAN   613590000 <chr [1]>  2022-01-24T09:16:50Z 2024-0…
#> 2 FISHING CARGO SERVICES PAN   214182732 <chr [1]>  2019-02-23T11:06:32Z 2022-0…
#> 3 FISHING CARGO SERVICES PAN   616852000 <chr [1]>  2014-01-04T11:52:41Z 2019-0…
#> 
#> $registryPublicAuthorizations
#> # A tibble: 0 × 1
#> # ℹ 1 variable: <list> <list>
#> 
#> $combinedSourcesInfo
#> # A tibble: 3 × 9
#>   vesselId  geartypes_geartype_n…¹ geartypes_geartype_s…² geartypes_geartype_y…³
#>   <chr>     <chr>                  <chr>                                   <int>
#> 1 1da8dbc2… CARRIER                GFW_VESSEL_LIST                          2022
#> 2 0b7047cb… CARRIER                GFW_VESSEL_LIST                          2019
#> 3 58cf536b… CARRIER                GFW_VESSEL_LIST                          2012
#> # ℹ abbreviated names: ¹​geartypes_geartype_name, ²​geartypes_geartype_source,
#> #   ³​geartypes_geartype_yearFrom
#> # ℹ 5 more variables: geartypes_geartype_yearTo <int>,
#> #   shiptypes_shiptype_name <chr>, shiptypes_shiptype_source <chr>,
#> #   shiptypes_shiptype_yearFrom <int>, shiptypes_shiptype_yearTo <int>
#> 
#> $selfReportedInfo
#> # A tibble: 3 × 13
#>   vesselId         ssvid shipname nShipname flag  callsign imo   messagesCounter
#>   <chr>            <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#> 1 1da8dbc23-3c48-… 6135… GABU RE… GABUREEF… CMR   TJMC996  8300…        72480839
#> 2 0b7047cb5-58c8-… 2141… GABU RE… GABUREEF… MDA   ER2732   8300…        70035084
#> 3 58cf536b1-1fca-… 6168… GABU RE… GABUREEF… COM   D6FJ2    8300…        32121624
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>
  • The id search allows the user to specify a vector of vesselIds

Note: vesselId is an internal ID generated by GFW to connect data accross APIs and involves a combination of vessel and tracking data information. It can be retrieved using get_vessel_info() and fetching the vector of responses inside $selfReportedInfo$vesselId. See the identity vignette for more information.

To search by vesselId, use parameter ids and specify search_type = "id":

get_vessel_info(ids = "8c7304226-6c71-edbe-0b63-c246734b3c01",
                search_type = "id",
                key = key)
#> $dataset
#> # A tibble: 1 × 1
#>   dataset                                
#>   <chr>                                  
#> 1 public-global-vessel-identity:v20231026
#> 
#> $registryInfoTotalRecords
#> # A tibble: 1 × 1
#>   registryInfoTotalRecords
#>                      <int>
#> 1                        2
#> 
#> $registryInfo
#> # A tibble: 2 × 15
#>   id                    sourceCode ssvid flag  shipname nShipname callsign imo  
#>   <chr>                 <list>     <chr> <chr> <chr>    <chr>     <chr>    <chr>
#> 1 a8d00ce54b37add7f85a… <chr [6]>  2106… CYP   FRIO FO… FRIOFORW… 5BWC3    9076…
#> 2 a8d00ce54b37add7f85a… <chr [2]>  2733… RUS   FRIO FO… FRIOFORW… UCRZ     9076…
#> # ℹ 7 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> #   transmissionDateTo <chr>, geartypes <list>, lengthM <int>, tonnageGt <int>,
#> #   vesselInfoReference <chr>
#> 
#> $registryOwners
#> # A tibble: 2 × 6
#>   name    flag  ssvid     sourceCode dateFrom             dateTo              
#>   <chr>   <chr> <chr>     <list>     <chr>                <chr>               
#> 1 COLINER CYP   210631000 <chr [1]>  2014-01-01T00:16:58Z 2024-05-31T23:44:00Z
#> 2 COLINER CYP   273379740 <chr [1]>  2015-02-27T10:59:43Z 2018-03-21T07:13:09Z
#> 
#> $registryPublicAuthorizations
#> # A tibble: 2 × 4
#>   dateFrom             dateTo               ssvid     sourceCode
#>   <chr>                <chr>                <chr>     <list>    
#> 1 2022-12-19T00:00:00Z 2024-06-01T00:00:00Z 210631000 <chr [1]> 
#> 2 2020-01-01T00:00:00Z 2024-06-01T00:00:00Z 210631000 <chr [1]> 
#> 
#> $combinedSourcesInfo
#> # A tibble: 2 × 9
#>   vesselId  geartypes_geartype_n…¹ geartypes_geartype_s…² geartypes_geartype_y…³
#>   <chr>     <chr>                  <chr>                                   <int>
#> 1 da1cd7e1… CARRIER                GFW_VESSEL_LIST                          2015
#> 2 8c730422… CARRIER                GFW_VESSEL_LIST                          2013
#> # ℹ abbreviated names: ¹​geartypes_geartype_name, ²​geartypes_geartype_source,
#> #   ³​geartypes_geartype_yearFrom
#> # ℹ 5 more variables: geartypes_geartype_yearTo <int>,
#> #   shiptypes_shiptype_name <chr>, shiptypes_shiptype_source <chr>,
#> #   shiptypes_shiptype_yearFrom <int>, shiptypes_shiptype_yearTo <int>
#> 
#> $selfReportedInfo
#> # A tibble: 1 × 13
#>   vesselId         ssvid shipname nShipname flag  callsign imo   messagesCounter
#>   <chr>            <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#> 1 8c7304226-6c71-… 2106… FRIO FO… FRIOFORW… CYP   5BWC3    9076…       263878798
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>

To specify more than one vesselId, you can submit a vector:

get_vessel_info(ids = c("8c7304226-6c71-edbe-0b63-c246734b3c01",
                        "6583c51e3-3626-5638-866a-f47c3bc7ef7c",
                        "71e7da672-2451-17da-b239-857831602eca"),
                search_type = 'id',
                key = key)
#> $dataset
#> # A tibble: 3 × 1
#>   dataset                                
#>   <chr>                                  
#> 1 public-global-vessel-identity:v20231026
#> 2 public-global-vessel-identity:v20231026
#> 3 public-global-vessel-identity:v20231026
#> 
#> $registryInfoTotalRecords
#> # A tibble: 3 × 1
#>   registryInfoTotalRecords
#>                      <int>
#> 1                        2
#> 2                        1
#> 3                        1
#> 
#> $registryInfo
#> # A tibble: 4 × 15
#>   id                    sourceCode ssvid flag  shipname nShipname callsign imo  
#>   <chr>                 <list>     <chr> <chr> <chr>    <chr>     <chr>    <chr>
#> 1 a8d00ce54b37add7f85a… <chr [6]>  2106… CYP   FRIO FO… FRIOFORW… 5BWC3    9076…
#> 2 a8d00ce54b37add7f85a… <chr [2]>  2733… RUS   FRIO FO… FRIOFORW… UCRZ     9076…
#> 3 685862e0626f6234c844… <chr [5]>  5480… PHL   JOHNREY… JOHNREYN… DUQA7    8118…
#> 4 b82d02e5c2c11e5fe536… <chr [5]>  4417… KOR   ADRIA    ADRIA     DTBY3    8919…
#> # ℹ 7 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> #   transmissionDateTo <chr>, geartypes <list>, lengthM <dbl>, tonnageGt <dbl>,
#> #   vesselInfoReference <chr>
#> 
#> $registryOwners
#> # A tibble: 4 × 6
#>   name                          flag  ssvid     sourceCode dateFrom       dateTo
#>   <chr>                         <chr> <chr>     <list>     <chr>          <chr> 
#> 1 COLINER                       CYP   210631000 <chr [1]>  2014-01-01T00… 2024-…
#> 2 COLINER                       CYP   273379740 <chr [1]>  2015-02-27T10… 2018-…
#> 3 TRANS PACIFIC JOURNEY FISHING PHL   548012100 <chr [3]>  2017-02-07T00… 2019-…
#> 4 DONGWON INDUSTRIES            KOR   441734000 <chr [2]>  2014-01-18T19… 2024-…
#> 
#> $registryPublicAuthorizations
#> # A tibble: 6 × 4
#>   dateFrom             dateTo               ssvid     sourceCode
#>   <chr>                <chr>                <chr>     <list>    
#> 1 2022-12-19T00:00:00Z 2024-06-01T00:00:00Z 210631000 <chr [1]> 
#> 2 2020-01-01T00:00:00Z 2024-06-01T00:00:00Z 210631000 <chr [1]> 
#> 3 2012-01-01T00:00:00Z 2024-05-01T00:00:00Z 548012100 <chr [1]> 
#> 4 2012-01-01T00:00:00Z 2017-10-25T00:00:00Z 548012100 <chr [1]> 
#> 5 2013-09-20T00:00:00Z 2024-06-01T00:00:00Z 441734000 <chr [1]> 
#> 6 2015-10-08T00:00:00Z 2020-07-21T00:00:00Z 441734000 <chr [1]> 
#> 
#> $combinedSourcesInfo
#> # A tibble: 8 × 9
#>   vesselId  geartypes_geartype_n…¹ geartypes_geartype_s…² geartypes_geartype_y…³
#>   <chr>     <chr>                  <chr>                                   <int>
#> 1 da1cd7e1… CARRIER                GFW_VESSEL_LIST                          2015
#> 2 8c730422… CARRIER                GFW_VESSEL_LIST                          2013
#> 3 71e7da67… TUNA_PURSE_SEINES      COMBINATION_OF_REGIST…                   2017
#> 4 55889aef… TUNA_PURSE_SEINES      COMBINATION_OF_REGIST…                   2017
#> 5 6583c51e… OTHER                  COMBINATION_OF_REGIST…                   2013
#> 6 6583c51e… OTHER                  COMBINATION_OF_REGIST…                   2013
#> 7 6583c51e… TUNA_PURSE_SEINES      COMBINATION_OF_REGIST…                   2014
#> 8 6583c51e… TUNA_PURSE_SEINES      COMBINATION_OF_REGIST…                   2014
#> # ℹ abbreviated names: ¹​geartypes_geartype_name, ²​geartypes_geartype_source,
#> #   ³​geartypes_geartype_yearFrom
#> # ℹ 5 more variables: geartypes_geartype_yearTo <int>,
#> #   shiptypes_shiptype_name <chr>, shiptypes_shiptype_source <chr>,
#> #   shiptypes_shiptype_yearFrom <int>, shiptypes_shiptype_yearTo <int>
#> 
#> $selfReportedInfo
#> # A tibble: 3 × 13
#>   vesselId         ssvid shipname nShipname flag  callsign imo   messagesCounter
#>   <chr>            <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#> 1 8c7304226-6c71-… 2106… FRIO FO… FRIOFORW… CYP   5BWC3    9076…       263878798
#> 2 71e7da672-2451-… 5480… JOHN RE… JOHNREYN… PHL   DUQA-7   8118…         1967237
#> 3 6583c51e3-3626-… 4417… ADRIA    ADRIA     KOR   DTBY3    8919…         3742574
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>

This is useful especially because a vessel can have different vesselIds in time. Check the function documentation for examples with the other function arguments and our dedicated vignette for more information about vessel identity .

Events API

The get_event() function allows you to get data on specific vessel activities from the GFW Events API. Event types include apparent fishing events, potential transshipment events (two-vessel encounters and loitering by refrigerated carrier vessels), port visits, and AIS-disabling events (“gaps”). Find more information in our caveat documentation.

Examples

The Events API uses vesselId as input, so you always need to use get_vessel_info() first to extract vesselId from $selfReportedInfo in the response.

vessel_info <- get_vessel_info(query = 224224000, key = key)

id <- vessel_info$selfReportedInfo$vesselId[1]

To get a list of port visits for that vessel:

get_event(event_type = 'PORT_VISIT',
          vessels = id,
          confidences = 4,
          key = key
          )
#> [1] "Downloading 24 events from GFW"
#> # A tibble: 24 × 11
#>    start               end                 id    type    lat    lon regions     
#>    <dttm>              <dttm>              <chr> <chr> <dbl>  <dbl> <list>      
#>  1 2019-11-15 14:15:11 2019-11-19 07:49:20 bbee… port…  5.22  -4.00 <named list>
#>  2 2019-12-06 11:02:09 2019-12-11 10:20:04 bcd9… port…  5.22  -4.01 <named list>
#>  3 2020-01-11 11:18:49 2020-01-15 11:54:49 889b… port…  5.23  -4.01 <named list>
#>  4 2020-01-27 08:04:38 2020-02-23 10:18:02 abed… port… 16.9  -25.0  <named list>
#>  5 2020-02-23 12:44:03 2020-02-24 10:35:02 672b… port… 16.9  -25.0  <named list>
#>  6 2020-03-05 13:28:59 2020-04-05 15:03:18 f539… port…  5.26  -4.03 <named list>
#>  7 2020-04-19 06:16:46 2020-04-21 14:02:19 5ad5… port… 28.1  -15.4  <named list>
#>  8 2020-05-05 06:52:54 2020-05-07 14:22:35 729d… port…  5.23  -4.00 <named list>
#>  9 2020-06-10 13:51:11 2020-06-13 13:51:28 8f14… port…  5.21  -4.05 <named list>
#> 10 2020-06-20 12:33:45 2020-06-20 19:43:10 a8f5… port… 14.7  -17.4  <named list>
#> # ℹ 14 more rows
#> # ℹ 4 more variables: boundingBox <list>, distances <list>, vessel <list>,
#> #   event_info <list>

Note: Try narrowing your search using start_date and end_date if the request is too large and returns a time out error (524)

We can also use more than one vesselId:

get_event(event_type = 'PORT_VISIT',
          vessels = c('8c7304226-6c71-edbe-0b63-c246734b3c01', 
                      '6583c51e3-3626-5638-866a-f47c3bc7ef7c'),
          confidences = 4,
          start_date = "2020-01-01",
          end_date = "2020-02-01",
          key = key
          )
#> [1] "Downloading 3 events from GFW"
#> # A tibble: 3 × 11
#>   start               end                 id      type    lat   lon regions     
#>   <dttm>              <dttm>              <chr>   <chr> <dbl> <dbl> <list>      
#> 1 2019-12-19 23:05:31 2020-01-24 19:05:18 7cd1e3… port…  28.1 -15.4 <named list>
#> 2 2020-01-26 05:52:47 2020-01-29 14:39:33 c2f096… port…  20.8 -17.0 <named list>
#> 3 2020-01-31 02:20:08 2020-02-03 15:56:31 7c06e4… port…  28.1 -15.4 <named list>
#> # ℹ 4 more variables: boundingBox <list>, distances <list>, vessel <list>,
#> #   event_info <list>

Or get encounters for all vessels in a given date range:

get_event(event_type = 'ENCOUNTER',
          start_date = "2020-01-01",
          end_date = "2020-01-02",
          key = key
          )
#> [1] "Downloading 248 events from GFW"
#> # A tibble: 248 × 11
#>    start               end                 id    type    lat    lon regions     
#>    <dttm>              <dttm>              <chr> <chr> <dbl>  <dbl> <list>      
#>  1 2019-12-17 14:10:00 2020-01-02 04:10:00 8c07… enco… 67.5    15.5 <named list>
#>  2 2019-12-17 14:10:00 2020-01-02 04:10:00 8c07… enco… 67.5    15.5 <named list>
#>  3 2019-12-26 00:20:00 2020-01-07 23:50:00 59d4… enco… -1.82 -113.  <named list>
#>  4 2019-12-26 00:20:00 2020-01-07 23:50:00 59d4… enco… -1.82 -113.  <named list>
#>  5 2019-12-26 14:10:00 2020-01-03 05:30:00 60c1… enco… -1.79 -113.  <named list>
#>  6 2019-12-26 14:10:00 2020-01-03 05:30:00 60c1… enco… -1.79 -113.  <named list>
#>  7 2019-12-27 09:10:00 2020-01-06 14:00:00 2159… enco…  9.50  -99.1 <named list>
#>  8 2019-12-27 09:10:00 2020-01-06 14:00:00 2159… enco…  9.50  -99.1 <named list>
#>  9 2019-12-30 02:20:00 2020-01-13 05:40:00 87de… enco… -1.84 -111.  <named list>
#> 10 2019-12-30 02:20:00 2020-01-13 05:40:00 87de… enco… -1.84 -111.  <named list>
#> # ℹ 238 more rows
#> # ℹ 4 more variables: boundingBox <list>, distances <list>, vessel <list>,
#> #   event_info <list>

When a date range is provided to get_event() using both start_date and end_date, any event overlapping that range will be returned, including events that start prior to start_date or end after end_date. If just start_date or end_date are provided, results will include all events that end after start_date or begin prior to end_date, respectively.

Note:
Because encounter events are events between two vessels, a single event will be represented twice in the data, once for each vessel. To capture this information and link the related data rows, the id field for encounter events includes an additional suffix (1 or 2) separated by a period. The vessel field will also contain different information specific to each vessel.

As another example, let’s combine the Vessels and Events APIs to get fishing events for a list of 20 USA-flagged trawlers:

# Download the list of USA trawlers
usa_trawlers <- get_vessel_info(
  where = "flag='USA' AND geartypes='TRAWLERS'",
  search_type = "search",
  key = key
)
# Pass the vector of vessel ids to Events API
usa_trawler_ids <- usa_trawlers$selfReportedInfo$vesselId[1:20]

Note: get_event() can receive up to 20 vessel ids at a time

Now get the list of fishing events for these trawlers in January, 2020:

get_event(event_type = 'FISHING',
          vessels = usa_trawler_ids,
          start_date = "2020-01-01",
          end_date = "2020-02-01",
          key = key
          )
#> [1] "Downloading 37 events from GFW"
#> # A tibble: 37 × 11
#>    start               end                 id    type    lat    lon regions     
#>    <dttm>              <dttm>              <chr> <chr> <dbl>  <dbl> <list>      
#>  1 2020-01-05 04:58:45 2020-01-05 06:31:45 379d… fish…  43.7 -124.  <named list>
#>  2 2020-01-07 05:10:47 2020-01-07 08:57:13 72d1… fish…  28.1  -93.9 <named list>
#>  3 2020-01-08 19:39:55 2020-01-08 22:43:54 94fd… fish…  43.8 -124.  <named list>
#>  4 2020-01-09 12:30:54 2020-01-09 17:44:54 51c5… fish…  38.4  -73.5 <named list>
#>  5 2020-01-09 18:32:34 2020-01-09 19:20:15 2068… fish…  38.3  -73.6 <named list>
#>  6 2020-01-09 21:14:43 2020-01-10 10:16:36 c60e… fish…  38.1  -73.8 <named list>
#>  7 2020-01-10 12:35:22 2020-01-10 16:22:01 4f20… fish…  38.0  -73.9 <named list>
#>  8 2020-01-10 18:21:53 2020-01-12 03:13:04 6739… fish…  38.0  -73.9 <named list>
#>  9 2020-01-13 12:45:32 2020-01-13 15:38:38 46f8… fish…  38.0  -73.9 <named list>
#> 10 2020-01-13 13:20:55 2020-01-13 15:07:53 2333… fish…  43.7 -124.  <named list>
#> # ℹ 27 more rows
#> # ℹ 4 more variables: boundingBox <list>, distances <list>, vessel <list>,
#> #   event_info <list>

When no events are available, the get_event() function returns nothing.

get_event(event_type = 'FISHING',
          vessels = usa_trawler_ids[2],
          start_date = "2020-01-01",
          end_date = "2020-01-01",
          key = key
          )
#> [1] "Your request returned zero results"
#> NULL

Fishing effort API

The get_raster() function gets a raster from the 4Wings API and converts the response to a data frame. In order to use it, you should specify:

  • The spatial resolution, which can be LOW (0.1 degree) or HIGH (0.01 degree)
  • The temporal resolution, which can be HOURLY, DAILY, MONTHLY, YEARLY or ENTIRE.
  • The variable to group by: FLAG, GEARTYPE, FLAGANDGEARTYPE, MMSI or VESSEL_ID
  • The date range note: this must be 366 days or less
  • The region polygon in sf format or the region code (such as an EEZ code) to filter the raster
  • The source for the specified region. Currently, EEZ, MPA, RFMO or USER_SHAPEFILE (for sf shapefiles).

Examples

You can load a sample shapefile inside gfwr to see how 'USER_SHAPEFILE' works:

data("test_shape")

get_raster(
  spatial_resolution = 'LOW',
  temporal_resolution = 'YEARLY',
  group_by = 'FLAG',
  start_date = '2021-01-01',
  end_date = '2021-02-01',
  region = test_shape,
  region_source = 'USER_SHAPEFILE',
  key = key
  )
#> Rows: 2526 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 2,526 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl>        <dbl> <chr>        <dbl>                    <dbl>
#>  1  14    60.9         2021 CHN              3                    21.3 
#>  2  13.8  59.3         2021 CHN              4                    15.2 
#>  3  13.7  61.2         2021 CHN              7                    63.5 
#>  4  13.7  61.8         2021 CHN              6                    33.8 
#>  5  13.5  61.5         2021 CHN              2                     7.7 
#>  6  13.4  61.3         2021 IRN              1                     3.31
#>  7  13    61.2         2021 CHN              1                    10.4 
#>  8  15    61.9         2021 CHN              3                     9.66
#>  9  14.6  62.7         2021 CHN              3                    25.4 
#> 10  14.6  63           2021 CHN              3                    35.6 
#> # ℹ 2,516 more rows

If you want raster data from a particular EEZ, you can use the get_region_id() function to get the EEZ id, and enter that code in the region argument of get_raster() instead of the region shapefile (ensuring you specify the region_source as 'EEZ':

# use EEZ function to get EEZ code of Cote d'Ivoire
code_eez <- get_region_id(region_name = 'CIV', region_source = 'EEZ', key = key)

get_raster(spatial_resolution = 'LOW',
           temporal_resolution = 'YEARLY',
           group_by = 'FLAG',
           start_date = "2021-01-01",
           end_date = "2021-10-01",
           region = code_eez$id,
           region_source = 'EEZ',
           key = key)
#> Rows: 611 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 611 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl>        <dbl> <chr>        <dbl>                    <dbl>
#>  1   5    -5.5         2021 CHN              1                     3.66
#>  2   5.2  -4           2021 SLV              3                     9.07
#>  3   5.2  -4           2021 LBR              2                    58.7 
#>  4   4.5  -4           2021 SLV              2                     9.14
#>  5   4.5  -3.8         2021 SLV              1                     7.15
#>  6   2.5  -5.4         2021 FRA              1                     8.92
#>  7   2    -4.2         2021 FRA              1                     7.98
#>  8   4.1  -7           2021 ESP              1                     2.72
#>  9   3.8  -5.9         2021 BLZ              1                     7.67
#> 10   3    -5.7         2021 ESP              1                     0.57
#> # ℹ 601 more rows

You could search for just one word in the name of the EEZ and then decide which one you want:

(get_region_id(region_name = 'France', region_source = 'EEZ', key = key))
#> # A tibble: 3 × 3
#>      id label                            iso3 
#>   <dbl> <chr>                            <chr>
#> 1  5677 France                           FRA  
#> 2 48966 Joint regime area Spain / France FRA  
#> 3 48976 Joint regime area Italy / France FRA

From the results above, let’s say we’re interested in the French Exclusive Economic Zone, 5677

get_raster(spatial_resolution = 'LOW',
           temporal_resolution = 'YEARLY',
           group_by = 'FLAG',
           start_date = "2021-01-01",
           end_date = "2021-10-01",
           region = 5677,
           region_source = 'EEZ',
           key = key)
#> Rows: 5660 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 5,660 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl>        <dbl> <chr>        <dbl>                    <dbl>
#>  1  49    -6.2         2021 FRA             20                   216.  
#>  2  49.1  -6.1         2021 FRA             14                    66.6 
#>  3  48.9  -6.2         2021 FRA             14                   104.  
#>  4  49    -6           2021 FRA             18                   264.  
#>  5  49    -6.1         2021 BLZ              1                     1.49
#>  6  49    -5.9         2021 FRA             19                   244.  
#>  7  49.1  -5.7         2021 FRA             20                   313.  
#>  8  49.1  -5.8         2021 BLZ              1                     0.17
#>  9  49    -5.8         2021 FRA             21                   389.  
#> 10  48.9  -5.8         2021 FRA             15                   209.  
#> # ℹ 5,650 more rows

A similar approach can be used to search for a specific Marine Protected Area, in this case the Phoenix Island Protected Area (PIPA)

# use region id function to get MPA code of Phoenix Island Protected Area
code_mpa <- get_region_id(region_name = 'Phoenix', region_source = 'MPA', key = key)

get_raster(spatial_resolution = 'LOW',
           temporal_resolution = 'YEARLY',
           group_by = 'FLAG',
           start_date = "2015-01-01",
           end_date = "2015-06-01",
           region = code_mpa$id[1],
           region_source = 'MPA',
           key = key)
#> Rows: 40 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 40 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl>        <dbl> <chr>        <dbl>                    <dbl>
#>  1  -3.9 -173.         2015 KOR              1                     0.01
#>  2  -4.7 -176.         2015 KOR              3                    15.8 
#>  3  -2.2 -176.         2015 KIR              1                     1.89
#>  4  -2.5 -176.         2015 KOR              1                     6.54
#>  5  -2.6 -176.         2015 TWN              1                     0.35
#>  6  -2.2 -176.         2015 KIR              1                     0.53
#>  7  -2.6 -176.         2015 KOR              1                     5.58
#>  8  -2.8 -176.         2015 KOR              1                     9.29
#>  9  -2.8 -176.         2015 KOR              2                    21.6 
#> 10  -2.9 -176.         2015 KOR              2                     9.74
#> # ℹ 30 more rows

It is also possible to filter rasters to one of the five regional fisheries management organizations (RFMO) that manage tuna and tuna-like species. These include "ICCAT", "IATTC","IOTC", "CCSBT" and "WCPFC".

get_raster(spatial_resolution = 'LOW',
           temporal_resolution = 'DAILY',
           group_by = 'FLAG',
           start_date = "2021-01-01",
           end_date = "2021-01-04",
           region = 'ICCAT',
           region_source = 'RFMO',
           key = key)
#> Rows: 17985 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr  (1): flag
#> dbl  (4): Lat, Lon, Vessel IDs, Apparent Fishing Hours
#> date (1): Time Range
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 17,985 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl> <date>       <chr>        <dbl>                    <dbl>
#>  1  28.4 -96   2021-01-03   USA              1                     4.35
#>  2  28.5 -95.7 2021-01-03   USA              5                    20.3 
#>  3  28.4 -95.9 2021-01-03   USA              3                     7.05
#>  4  28.4 -95.8 2021-01-03   USA              3                    17.8 
#>  5  28.4 -95.7 2021-01-03   USA              4                    11.0 
#>  6  28.6 -95.5 2021-01-03   USA              2                     3.94
#>  7  28.7 -95.5 2021-01-03   USA              2                     5.08
#>  8  28.7 -95.4 2021-01-03   USA              2                     5.82
#>  9  28.7 -95.3 2021-01-04   USA              1                     1   
#> 10  28.8 -95.4 2021-01-03   USA              1                     0.94
#> # ℹ 17,975 more rows

The get_region_id() function also works in reverse. If a region id is passed as a numeric to the function as the region_name, the corresponding region label or iso3 code can be returned. This is especially useful when events are returned with regions.

# using same example as above
get_event(event_type = 'FISHING',
          vessels = usa_trawler_ids,
          start_date = "2020-01-01",
          end_date = "2020-02-01",
          key = key
          ) %>%
  # extract EEZ id code
  dplyr::mutate(eez = as.character(purrr::map(purrr::map(regions, purrr::pluck, 'eez'),
                                              paste0, collapse = ','))) %>%
  dplyr::select(id, type, start, end, lat, lon, eez) %>%
  dplyr::rowwise() %>%
  dplyr::mutate(eez_name = get_region_id(region_name = as.numeric(eez),
                                         region_source = 'EEZ',
                                         key = key)$label) %>% 
  dplyr::select(-start, -end)
#> [1] "Downloading 37 events from GFW"
#> # A tibble: 37 × 6
#> # Rowwise: 
#>    id                               type      lat    lon eez   eez_name     
#>    <chr>                            <chr>   <dbl>  <dbl> <chr> <chr>        
#>  1 379d452b49e0a2077aa92d23ab751de0 fishing  43.7 -124.  8456  United States
#>  2 72d1e4f6bf30b438f60876b0361ce75c fishing  28.1  -93.9 8456  United States
#>  3 94fdf957151db6b7e952ecd52107b443 fishing  43.8 -124.  8456  United States
#>  4 51c5140b261fca6214ea872209b74d85 fishing  38.4  -73.5 8456  United States
#>  5 2068a73ed9b3a4841be99e6f889a5cc8 fishing  38.3  -73.6 8456  United States
#>  6 c60e52370d48a741413094daec2d78ca fishing  38.1  -73.8 8456  United States
#>  7 4f20b44a59be19f188863af0a57e44c9 fishing  38.0  -73.9 8456  United States
#>  8 6739137b68e5fb477de38226f57892f7 fishing  38.0  -73.9 8456  United States
#>  9 46f8debd1e55a894ca26ac74faf11162 fishing  38.0  -73.9 8456  United States
#> 10 23330ffa0e1bbab43ead8328456c45aa fishing  43.7 -124.  8456  United States
#> # ℹ 27 more rows

When your API request times out

For API performance reasons, the get_raster() function restricts individual queries to a single year of data. However, even with this restriction, it is possible for API request to time out before it completes. When this occurs, the initial get_raster() call will return an HTTP 524 error, and subsequent API requests using any gfwr get_ function will return an HTTP 429 error until the original request completes:

Error in httr2::req_perform(): ! HTTP 429 Too Many Requests. • Your application token is not currently enabled to perform more than one concurrent report. If you need to generate more than one report concurrently, contact us at apis@globalfishingwatch.org

Although no data was received, the request is still being processed by the APIs and will become available when it completes. To account for this, gfwr includes the get_last_report() function, which lets users request the results of their last API request with get_raster().

The get_last_report() function will tell you if the APIs are still processing your request and will download the results if the request has finished successfully. You will receive an error message if the request finished but resulted in an error or if it’s been >30 minutes since the last report was generated using get_raster(). For more information, see the Get last report generated endpoint documentation on the GFW API page.

Contributing

We welcome all contributions to improve the package! Please read our Contribution Guide and reach out!

About

Paquete R para acceder a datos de las API de Global Fishing Watch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 97.7%
  • R 2.3%