Skip to content

Commit

Permalink
Create entanglement_model.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Jul 15, 2024
1 parent 0207457 commit 26e305f
Showing 1 changed file with 84 additions and 0 deletions.
84 changes: 84 additions & 0 deletions quantum_models/entanglement_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
import numpy as np
from scipy.linalg import expm

class EntanglementModel:
def __init__(self, num_qubits, entanglement_threshold):
self.num_qubits = num_qubits
self.entanglement_threshold = entanglement_threshold

def generate_entangled_state(self, num_qubits):
"""
Generate an entangled state using the GHZ state.
Args:
num_qubits (int): The number of qubits.
Returns:
numpy array: The entangled state.
"""
ghz_state = np.zeros(2 ** num_qubits)
ghz_state[0] = 1 / np.sqrt(2)
ghz_state[-1] = 1 / np.sqrt(2)
return ghz_state

def calculate_entanglement_entropy(self, state_vector):
"""
Calculate the entanglement entropy using the von Neumann entropy.
Args:
state_vector (numpy array): The state vector.
Returns:
float: The entanglement entropy.
"""
# Calculate the density matrix
density_matrix = np.outer(state_vector, state_vector)

# Calculate the von Neumann entropy
entropy = -np.trace(np.dot(density_matrix, np.log2(density_matrix)))

return entropy

def optimize_entanglement(self, initial_state, target_state):
"""
Optimize the entanglement using a genetic algorithm.
Args:
initial_state (numpy array): The initial state.
target_state (numpy array): The target state.
Returns:
numpy array: The optimized entangled state.
"""
def objective_function(params):
# Simulate the entanglement using the GHZ state
entangled_state = self.generate_entangled_state(self.num_qubits)
# Calculate the objective function (e.g. minimize entanglement entropy)
objective = np.abs(np.dot(entangled_state, target_state))
return objective

result = minimize(objective_function, initial_state, method="SLSQP")
optimized_state = result.x
return optimized_state

def simulate_entanglement(self, state_vector, time_span):
"""
Simulate the entanglement using the Schrödinger equation.
Args:
state_vector (numpy array): The state vector.
time_span (list): The time span for the simulation.
Returns:
numpy array: The simulated entanglement data.
"""
# Define the Schrödinger equation
def schrodinger_equation(t, y):
dydt = np.zeros_like(y)
for i in range(self.num_qubits):
dydt[i] = 1j * y[i]
return dydt

# Simulate the entanglement
solution = odeint(schrodinger_equation, state_vector, time_span)
return solution

0 comments on commit 26e305f

Please sign in to comment.