-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
84 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
import numpy as np | ||
from scipy.linalg import expm | ||
|
||
class EntanglementModel: | ||
def __init__(self, num_qubits, entanglement_threshold): | ||
self.num_qubits = num_qubits | ||
self.entanglement_threshold = entanglement_threshold | ||
|
||
def generate_entangled_state(self, num_qubits): | ||
""" | ||
Generate an entangled state using the GHZ state. | ||
Args: | ||
num_qubits (int): The number of qubits. | ||
Returns: | ||
numpy array: The entangled state. | ||
""" | ||
ghz_state = np.zeros(2 ** num_qubits) | ||
ghz_state[0] = 1 / np.sqrt(2) | ||
ghz_state[-1] = 1 / np.sqrt(2) | ||
return ghz_state | ||
|
||
def calculate_entanglement_entropy(self, state_vector): | ||
""" | ||
Calculate the entanglement entropy using the von Neumann entropy. | ||
Args: | ||
state_vector (numpy array): The state vector. | ||
Returns: | ||
float: The entanglement entropy. | ||
""" | ||
# Calculate the density matrix | ||
density_matrix = np.outer(state_vector, state_vector) | ||
|
||
# Calculate the von Neumann entropy | ||
entropy = -np.trace(np.dot(density_matrix, np.log2(density_matrix))) | ||
|
||
return entropy | ||
|
||
def optimize_entanglement(self, initial_state, target_state): | ||
""" | ||
Optimize the entanglement using a genetic algorithm. | ||
Args: | ||
initial_state (numpy array): The initial state. | ||
target_state (numpy array): The target state. | ||
Returns: | ||
numpy array: The optimized entangled state. | ||
""" | ||
def objective_function(params): | ||
# Simulate the entanglement using the GHZ state | ||
entangled_state = self.generate_entangled_state(self.num_qubits) | ||
# Calculate the objective function (e.g. minimize entanglement entropy) | ||
objective = np.abs(np.dot(entangled_state, target_state)) | ||
return objective | ||
|
||
result = minimize(objective_function, initial_state, method="SLSQP") | ||
optimized_state = result.x | ||
return optimized_state | ||
|
||
def simulate_entanglement(self, state_vector, time_span): | ||
""" | ||
Simulate the entanglement using the Schrödinger equation. | ||
Args: | ||
state_vector (numpy array): The state vector. | ||
time_span (list): The time span for the simulation. | ||
Returns: | ||
numpy array: The simulated entanglement data. | ||
""" | ||
# Define the Schrödinger equation | ||
def schrodinger_equation(t, y): | ||
dydt = np.zeros_like(y) | ||
for i in range(self.num_qubits): | ||
dydt[i] = 1j * y[i] | ||
return dydt | ||
|
||
# Simulate the entanglement | ||
solution = odeint(schrodinger_equation, state_vector, time_span) | ||
return solution |