This is a pytorch implementation of Feedback-Network (CVPR 2017, Zamir et al.)
- Pytorch = 0.3.1
- python = 2.7
- numpy >= 1.14.2
-
Data:
- Download CIFAR100 dataset (binary file), and put it under folder
./data/
- Download CIFAR100 dataset (binary file), and put it under folder
-
Run:
- Run
classifier_train.py
python FeedbackNet_train.py
- The trained model will saved in folder
./models/
every 10 epochs。 - Attention:
- You can adjust the parameter
batch_size
to fit your GPU memory。
- You can adjust the parameter
- Run
-
Data:
- Download CIFAR100 dataset (binary file), and put it under folder
./data/
- Download CIFAR100 dataset (binary file), and put it under folder
-
Evaluate on CIFAR100 dataset:
- Put the checkpoint files under folder
./models/
, and specify the checkpoints file path by setting parameterparams.ckpt
in fileclassifier_train.py
. You can download my baseline model here - Run
classifier_train.py
python FeedbackNet_test.py
- Put the checkpoint files under folder
- Val Accuracy
Physical / Virtual Depth | PAPER(tp1) | PAPER(tp5) | ME(tp1) | ME(tp5) |
---|---|---|---|---|
12 / 48 (stack-3;iteration=4) | 71.12% | 91.51% | 70.92% | 92.02% |
- Skip connections
- Multi-GPU
- Other virtual depths
- @amir32002 feedback-networks : The Torch7 repo of Feedback Networks, Zamir et al.
- Thanks @maxspero for the implemention of
FeedbackNet
. In this repository, I change a few codes in./network/feedbacknet.py
and./network/convlstmstack.py
to fit the model definition in the original paper - @bzcheeseman_pytorch-feedbacknet