Skip to content

Commit

Permalink
Merge pull request #2 from MSD-IRIMAS/aif/add-utils
Browse files Browse the repository at this point in the history
[ENH] Add vis functions
  • Loading branch information
hadifawaz1999 authored Jul 21, 2024
2 parents 0866872 + a7a1411 commit 4d4b8b2
Show file tree
Hide file tree
Showing 11 changed files with 956 additions and 5 deletions.
101 changes: 100 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1 +1,100 @@
# DTW_VIS
# Elastic Warping Visualization For Time Series

## Author

- **Ali Ismail-Fawaz** ([hadifawaz1999](https://github.com/hadifawaz1999))

This repository contains a project for visualizing warping distortions such as the ones produced by Dynamic Time Warping (DTW) between two time series. The project includes functions to generate plots and animated MP4s showcasing the alignment between the series. The repository is configured using [Hydra](https://hydra.cc/docs/intro/) for flexible and organized parameter management, and [aeon-toolkit](https://www.aeon-toolkit.org/en/stable/) for all time series processing and similarity measure calculation.

## Contents

- `main.py`: The main script to run the DTW visualization.
- `draw_functions.py`: Contains the functions for generating plots and GIFs.
- `utils.py`: Utility functions used in the project.
- `config/config_hydra.yaml`: Configuration file for Hydra.


## Usage

### Prerequisites

- Python >= 3.10
- Required Python libraries:
- `numpy==1.26.4`
- `matplotlib==3.9.0`
- `hydra-core==1.3.2`
- `aeon==0.10.0`
- Required on the system:
- `ffmpeg` version `4.4.2`

### Running the Code

1. Configure the parameters in `config/config_hydra.yaml` as needed.
2. Run the main script:
```sh
python3 main.py
```

### Configuration Parameters

The following parameters can be configured in the `config/config_hydra.yaml` file:

- **Hydra Configuration:**
- `hydra.job.name`: Name of the job (default: `dtw-vis`).
- `hydra.run.dir`: Directory to save experiment results (default: `exps/${hydra.job.name}`).

- **General Parameters:**
- `output_dir`: Directory where output plots and MP4s will be saved (default: `./`).
- `dataset`: Name of the dataset to use (default: `ItalyPowerDemand`) loaded from aeon-toolkit, see the [classification dataset list](https://github.com/aeon-toolkit/aeon/blob/main/aeon/datasets/tsc_datasets.py), the [regression datasets list](https://github.com/aeon-toolkit/aeon/blob/main/aeon/datasets/tser_datasets.py) and the [forecasting datasets lists](https://github.com/aeon-toolkit/aeon/blob/main/aeon/datasets/tsf_datasets.py).
- `split`: Dataset split (default: `None`).
- `znormalize`: Whether to Z-normalize the time series (default: `True`).
- `class_x`: Class label for the first time series (default: `0`).
- `class_y`: Class label for the second time series (default: `1`).
- `show_warping`: Whether to show warping connections in the plot (default: `False`).
- `figsize`: Figure size for the plots (default: `[12, 10]`).

- **Metric Parameters:**
- `metric`: Metric used for elastic warping calculation (default: `dtw`), see [aeon's list of elastic measures](https://www.aeon-toolkit.org/en/stable/api_reference/distances.html).
- `metric_params`: Additional parameters for the DTW metric, including:
- `window`: Window size for the Sakoe-Chiba band (default: `None`).
- `p`: Parameter for p-norm (default: `2.0`).
- `w`: Window size (default: `None`).
- `itakura_max_slope`: Maximum slope for Itakura parallelogram (default: `None`).
- `descriptor`: Descriptor function (default: `identity`).
- `reach`: Reach parameter (default: `5`).
- `g`: Parameter for derivative DTW (default: `0.05`).
- `epsilon`: Epsilon parameter for soft-DTW (default: `1.0`).
- `g_arr`: G array for derivative DTW (default: `None`).
- `nu`: Regularization parameter for shape-based DTW (default: `0.001`).
- `lmbda`: Regularization parameter for penalized DTW (default: `1.0`).
- `independent`: Whether to use independent feature DTW (default: `True`).
- `c`: Regularization parameter for elastic shape DTW (default: `1.0`).
- `warp_penalty`: Penalty for warping path length (default: `1.0`).
- `standardize`: Whether to standardize the time series before DTW (default: `True`).
## Example
Using DTW on ItalyPowerDemand dataset
- In video format: [dtw-italy](exps/dtw-vis/ItalyPowerDemand/dtw.mp4)
- In pdf format: [dtw-italy-pdf](exps/dtw-vis/ItalyPowerDemand/dtw.pdf)
## Citation
If you use this code in your research, please cite this repository:
```bibtex
@misc{ismail-fawaz2024elastic-vis,
author = {Ismail-Fawaz, Ali and Devanne, Maxime and Berretti, Stefano and Weber, Jonathan and Forestier, Germain},
title = {Elastic Warping Visualization For Time Series},
year = {2024},
publisher = {Github},
journal = {GitHub repository},
howpublished = {\url{https://github.com/yourusername/dtw-visualization}}
}
```
## Acknowledgments
@e would like to thank the authors of the UCR, UEA and Monash archives for making the Time Series Classification/Regression/Forecasting datasets publicly available.
We would also like to thank the Aeon time series machine learning python toolkit for their fast implementation of elastic similarity measures.
34 changes: 34 additions & 0 deletions config/config_hydra.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
hydra :
job :
name : dtw-vis
run :
dir : exps/${hydra.job.name}

output_dir: './' # output directory
dataset : "ItalyPowerDemand" # dataset name to load from aeon
split: Null # either use train/test or both splits
znormalize: True # znormalize each time series channel independent

class_x: 0 # In case of classification, class of first sample
class_y: 1 # In case of classification, class of second sample

show_warping: False # Show warping connections in pdf
figsize: [12,10] # figure size

metric : "dtw" # similarity measure to use
metric_params : # dictionary with measure parameters
window: null # for all warping based distances
p : 2.0 # for the minkowski, erp, wddtw, wdtw
w : null # for the minkowski distance
itakura_max_slope: null # for all warping based distances
descriptor : "identity" # for shape_dtw
reach : 5 # for shape_dtw
g : 0.05 # for wdtw
epsilon : 1.0 # for lcss, edr
g_arr : null # for erp
nu : 0.001 # for twe
lmbda : 1.0 # for twe
independent : True # for msm
c : 1.0 # for msm
warp_penalty : 1.0 # for adtw
standardize : True # for sbd
Loading

0 comments on commit 4d4b8b2

Please sign in to comment.