Skip to content

Well Belo Log, a pythonlibrary to work with .las, .lis and .dlis files.

License

Notifications You must be signed in to change notification settings

MonumentoSoftware/wellbelog

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

37 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

icon

Well Belo Log

Python Package Test codecov

The aim of Well Belo Log is to ease the workflow of dealing with large ammounts of files. It's quite common the need to restart your kernel while trying to acess some data in a closed file. Or maybe the boiler code is just too much, to merge the logical files, extract the frames... Anyway, enjoy...

Installation

You can install the package using pip directly from the github repository:

pip install git+https://github.com/MonumentoSoftware/wellbelog

or you can clone the repository and install it locally:

git clone https://github.com/MonumentoSoftware/wellbelog
cd webelog
pip install .

Usage

The main objective of WellBeLog is to ease the workflow when working with .dlis, .las and .dlis files. So, there are three main classes that you can use to work with these files. Also, we offer support to .tiff files, via the DlisReader and the LisReader classes.

  • DlisReader: to read .dlis files
  • LasReader: to read .las files
  • LisReader: to read .lis files

Dataframes

All modules to deal with the files extensions, have a DataframeSchema class that can be generate pandas Dataframes.

  • dlis has a FrameDataframe class
  • las has a LasDataframe class
  • lis has a CurveDataframe class

Ploting Curves

We intend to expand this feature, ut for now we have a generic funtion to plot all curves.

Plotting all curves

The plot_all_curves function receives a pandas dataframe, the depth column name, and the file name. It returns a plotly figure.

plot_all_curves

Las Example

from webelog.plotters.general import plot_all_curves
from webelog.belolas import LasReader

# Acessing the data
reader = LasReader()
las_file = reader.process_las_file('path/to/your/file.las')
data = las_file.data
df = data.as_df()
figure = plot_all_curves(df, 'DEPT', las_file.file_name)
figure.show()

Lis Example

from webelog.plotters.general import plot_all_curves
from webelog.belolas import LisReader

# Acessing the data
reader = LisReader()
lis_file = reader.process_lis_file('path/to/your/file.lis')
curve_1 = file.logical_files[2].get_curve()
df = curve_1.as_df()
fig = plot_all_curves(df, 'DEPT', f'{file.file_name}-{file.logical_files[0].logical_id}.png')
fig.show()

Working with Dlis files

In the Belodlis folder you can find all the tools to work with Dlis files. The DlisReader class reads the physical file and returns a PhysicalFileModel object, that contains all the information about the logical files, logical records, channels, frames, etc.

Searching for Dlis Files

A simple way to search for Dlis files is to use the search_files method. It returns a list of all the Dlis files in the folder.

from webelog.belodlis import DlisReader

reader = DlisReader()
dlis_files = reader.search_files('path/to/your/folder')

Reading Dlis Files

The process_physical_file method returns a PhysicalFileModel object, that contains all the information about the logical files, logical records, channels, frames, etc.

from webelog.belodlis import DlisReader

reader = DlisReader()
dlis_file = reader.process_physical_file('path/to/your/file.dlis')

Table View

Prints a table with the file information.

from webelog.belodlis import DlisReader

reader = DlisReader()
dlis_file = reader.process_physical_file('path/to/your/file.dlis')
dlis_file.logical_files_table()

Will print something like this:

                           1PIR1AL_conv_ccl_canhoneio.dlis
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┓
┃ File Name                       ┃ Curves                                   ┃ Error ┃
┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━┩
β”‚ 1PIR1AL_conv_ccl_canhoneio.dlis β”‚ ['TDEP', 'MINMK', 'LSPD', 'LTEN', 'CCL'] β”‚ False β”‚
β”‚ 1PIR1AL_conv_ccl_canhoneio.dlis β”‚ ['TDEP', 'MINMK', 'LSPD', 'LTEN', 'CCL'] β”‚ False β”‚
β”‚ 1PIR1AL_conv_ccl_canhoneio.dlis β”‚ ['TDEP', 'MINMK', 'LSPD', 'LTEN', 'CCL'] β”‚ False β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜

to dataframe

To convert the data to a pandas dataframe.

import pandas as pd
from webelog.belodlis import DlisReader

reader = DlisReader()
dlis_file = reader.process_physical_file('path/to/your/file.dlis')
frame = dlis_file.logical_files[0].get_frame()
df: pd.DataFrame = frame.data.as_df()

to csv

To save the data to a CSV file.

import pandas as pd
from webelog.belodlis import DlisReader

reader = DlisReader()
dlis_file = reader.process_physical_file('path/to/your/file.dlis')
frame = dlis_file.logical_files[0].get_frame()
frame.data.to_csv('path/to/your/file.csv')

# NOTE the function returns the path to the file.
path_to_csv = frame.data.to_csv('path/to/your/file.csv')

to excel

To save the data to an Excel file.

import pandas as pd
from webelog.belodlis import DlisReader


reader = DlisReader()
dlis_file = reader.process_physical_file('path/to/your/file.dlis')
frame = dlis_file.logical_files[0].get_frame()
frame.data.to_excel('path/to/your/file.xlsx')

# NOTE the function returns the path to the file.
path_to_excel = frame.data.to_excel('path/to/your/file.xlsx')

Dlis File Models

  • Schemas Folder We make use of Pydantic to create the models. The PhysicalFileModel is the main model, but we have LogicalFileModel to represent the logical files, FrameModel to represent the frames. Here are the main models:

PhysicalFileModel

The main model, that contains all the information about the logical files, logical records, channels, frames, etc.

class PhysicalFileModel(TimeStampedModelSchema):
    file_name: str = Field(..., description="The name of the file.")
    error: bool = Field(False, description="If the file has any error during opening.")
    error_message: Optional[str] = Field(None, description="The error exception if any.")
    logical_files: Optional[list[LogicalFileModel]] = Field(default_factory=list, description="The logical files.")
    error_files: Optional[list[LogicalFileModel]] = Field(default_factory=list, description="The error files.")
    mnemonics: Optional[list[str]] = Field(default_factory=list, description="The mnemonics of the file.")

LogicalFileModel

To represent the logical files.

class LogicalFileModel(TimeStampedModelSchema):
    file_name: str = Field(..., description="The name of the file.")
    logical_id: Any = Field(..., description="The id of the logical file.")
    summary: LogicalFileSummary = Field(..., description="The summary of the file.")
    frames: list[FrameModel] = Field(None, description="The frames of the file.")
    error: bool = Field(False, description="If the file has any error during opening.")
    error_message: Optional[str] = Field(None, description="The error exception if any.")

FrameModel

To represent the frames.

class FrameModel(TimeStampedModelSchema):
    file_name: str = Field(..., description="The name of the file.")
    logical_file_id: str = Field(..., description="The id of the logical file.")
    description: Optional[str] = Field(None, description="The description of the file.")
    channels: ChannelsList = Field(None, description="The channels of the file.")
    error: bool = Field(False, description="If the file has any error during opening.")
    error_message: Optional[str] = Field(None, description="The error exception if any.")
    data: Optional[FrameDataframe] = Field(None, description="The dataframe of the file.")

FrameDataframe

To represent the Dataframe. The FrameDataframe class extends the DataframeSchema, that has a method to convert the data to a pandas DataFrame. And exports the data to a CSV file or to a Excel file.

class FrameDataframe(DataframeSchema):

    file_name: str = Field(..., description="The name of the file.")
    logical_file_id: str = Field(..., description="The id of the logical file.")
    data: list[dict] = Field(None, description="The dataframe of the file.")

Working with Las files

In the Belolas folder you can find all the tools to work with Las files. The .las extension is newer than the .dlis extension, and it's a lot simpler to work with. The LasReader class reads the physical file and returns a LasFileModel object, that contains all the information about the sections, curves, etc.

Searching for Las Files

Use the search_files method to search for Las files in a folder. It returns a list of all the Las files in the folder.

from webelog.belolas import LasReader

reader = LasReader()
las_files = reader.search_files('path/to/your/folder')

Reading Las Files

The process_las_file method returns a LasFileModel object.

from webelog.belolas import LasReader

reader = LasReader()
las_file = reader.process_las_file('path/to/your/file.las')

LasFile Table

Prints a table with the file information.

from webelog.belolas import LasReader

reader = LasReader()
las_file = reader.process_las_file('path/to/your/file.las')
las_file.table_view()
                                                       1-MPE-3-AL_hals-dslt-tdd-hgns-gr_resistividade_repetida.las
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┓
┃ File Name                                                   ┃ Curves                                                                                          ┃ Error ┃
┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━┩
β”‚ 1-MPE-3-AL_hals-dslt-tdd-hgns-gr_resistividade_repetida.las β”‚ ['DEPT', 'DT', 'GR', 'HCAL', 'HDRA', 'HLLD', 'HLLS', 'HRM', 'HSO', 'HTEM', 'ITT', 'NPHI',       β”‚ False β”‚
β”‚                                                             β”‚ 'PEFZ', 'RHOZ']                                                                                 β”‚       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜

Frame data to dataframe

To convert the data to a pandas dataframe.

import pandas as pd
from webelog.belolas import LasReader

reader = LasReader()
las_file = reader.process_las_file('path/to/your/file.las')
df: pd.DataFrame = las_file.data.as_df()

Frame data to csv

To save the data to a CSV file.

import pandas as pd
from webelog.belolas import LasReader

reader = LasReader()
las_file = reader.process_las_file('path/to/your/file.las')
las_file.data.to_csv('path/to/your/file.csv')

# NOTE the function returns the path to the file.
path_to_csv = las_file.data.to_csv('path/to/your/file.csv')

Frame data to excel

To save the data to an Excel file.

import pandas as pd
from webelog.belolas import LasReader

reader = LasReader()
las_file = reader.process_las_file('path/to/your/file.las')
las_file.data.to_excel('path/to/your/file.xlsx')

# NOTE the function returns the path to the file.
path_to_excel = las_file.data.to_excel('path/to/your/file.xlsx')

Las File Models

We make use of Pydantic to create the models. The LasFileModel is the main model, but we have SectionModel to represent the sections, CurveModel to represent the curves, etc.

LasFileModel

A class to represent the Las file. It contains the file name, the folder name, the specs, the data, and some error handling.

class LasFileModel(TimeStampedModelSchema):
    file_name: str = Field(..., description="The name of the file.")
    folder_name: Optional[str] = Field(None, description="The name of the folder.")
    specs: list[LasCurvesSpecs] = Field([], description="The curves specs.")
    error: bool = Field(False, description="If the file has any error during opening.")
    error_message: Optional[str] = Field(None, description="The error exception if any.")

    data: Optional[LasDataframe] = Field(None, description="The data of the file.")

    def column_search(self, column: str) -> Optional[LasCurvesSpecs]:
        for spec in self.specs:
            if spec.mnemonic == column:
                return spec
        return None

LasDataframe

A class to represent the Dataframe. It extends the DataframeSchema, that has a method to convert the data to a pandas DataFrame. And exports the data to a CSV file or to a Excel file.

class LasDataframe(DataframeSchema):
    file_name: str = Field(..., description="The name of the file.")
    columns: list[str] = Field(..., description="The columns of the curve.")
    shape: tuple = Field(..., description="The shape of the curve.")

Working with Lis files

Similar do the .Dlis file extension, the lis format is quite old and was the first of the three to be created. The BeloLis folder contains all the tools to work with Lis files. Nowadays, it's not so common to find .lis files, but we offer support to it as well. Also, there are some .Tiff files that uses the .lis extension.

Searching for Lis Files

A simple way to search for Lis files is to use the search_files method. It returns a list of all the Lis files in the folder.

from webelog.belolas import LisReader

reader = LisReader()
lis_files = reader.search_files('path/to/your/folder')

Reading Lis Files

The process_lis_file method returns a LisFileModel object.

from webelog.belolas import LisReader

reader = LisReader()
lis_file = reader.process_physical_file('path/to/your/file.lis')

Table View

Prints a table with the file information.

from webelog.belolas import LisReader

reader = LisReader()
lis_file = reader.process_lis_file('path/to/your/file.lis')
lis_file.logical_files_table()

Will print something like this:

                                                            1-MPE-3-AL.lis
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┓
┃ File Name      ┃ Curves                                                                                                     ┃ Error ┃
┑━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━┩
β”‚ 1-MPE-3-AL.lis β”‚ []                                                                                                         β”‚ False β”‚
β”‚ 1-MPE-3-AL.lis β”‚ ['SP', 'SN', 'TBHV', 'DIR', 'ABHV', 'DEPT', 'DT', 'GR', 'ITT', 'TT4', 'TT1', 'YCAL', 'XCAL', 'TT3', 'TT2'] β”‚ False β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜

Frame data to dataframe

To convert the data to a pandas dataframe.

import pandas as pd
from webelog.belolas import LisReader

reader = LisReader()
lis_file = reader.process_lis_file('path/to/your/file.lis')
df: pd.DataFrame = lis_file.logical_files[0].curves_data[0].as_df()

Frame data to csv

To save the data to a CSV file.

import pandas as pd
from webelog.belolas import LisReader

reader = LisReader()
lis_file = reader.process_lis_file('path/to/your/file.lis')
lis_file.logical_files[0].curves_data[0].to_csv('path/to/your/file.csv')

# NOTE the function returns the path to the file.
path_to_csv = lis_file.logical_files[0].curves_data[0].to_csv('path/to/your/file.csv')

Frame data to excel

To save the data to an Excel file.

import pandas as pd
from webelog.belolas import LisReader

reader = LisReader()
lis_file = reader.process_lis_file('path/to/your/file.lis')
lis_file.logical_files[0].curves_data[0].to_excel('path/to/your/file.xlsx')

# NOTE the function returns the path to the file.
path_to_excel = lis_file.logical_files[0].curves_data[0].to_excel('path/to/your/file.xlsx')

Developing the project

To develop the project, you can clone the repository and install the requirements:

git clone https://github.com/MonumentoSoftware/wellbelog
cd wellbelog
poetry install

You can develop the project by creating new classes, methods, etc. Then you can run examples inside the poetry shell, let's say the dlis_example.py:

poetry shell
python examples/dlis_example.py

Then you can run the tests:

poetry run pytest

Academic Sponsors

Thus project was developed to support the research of LAGESE - LaboratΓ³rioLaboratΓ³rio de Geologia Sedimentar e Ambiental, da Universidade Federal de Pernambuco (UFPE) , located on the LITPEG - Instituto de Pesquisa em PetrΓ³leo e Energia.

Lagese logo Monumento logo

About

Well Belo Log, a pythonlibrary to work with .las, .lis and .dlis files.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published