Code accompanying the ICLR 2019 paper Kernel Change-point Detection with Auxiliary Deep Generative Models.
- Python (v2.7)
- PyTorch (v0.2.20)
- scikit-learn
see
$ cat klcpd_py2.7_pt0.2.0_conda.txt
for an example of the detailed package dependencies configurations.
python klcpd.py [OPTIONS]
OPTIONS:
--data_path DATA_PATH data path to dataset.mat
--trn_ratio TRN_RATIO how much data used for training
--val_ratio VAL_RATIO how much data used for validation
--gpu GPU gpu device id
--cuda CUDA use gpu or not
--random_seed RANDOM_SEED random seed
--wnd_dim WND_DIM window size (past and future)
--sub_dim SUB_DIM dimension of subspace embedding
--RNN_hid_dim RNN_HID_DIM number of RNN hidden units
--batch_size BATCH_SIZE batch size for training
--max_iter MAX_ITER max iteration for pretraining RNN
--optim OPTIM sgd|rmsprop|adam for optimization method
--lr LR learning rate
--weight_decay WEIGHT_DECAY weight decay (L2 regularization)
--momentum MOMENTUM momentum for sgd
--grad_clip GRAD_CLIP gradient clipping for RNN (both netG and netD)
--eval_freq EVAL_FREQ evaluation frequency per generator update
--CRITIC_ITERS CRITIC_ITERS number of updates for critic per generator
--weight_clip WEIGHT_CLIP weight clipping for crtic
--lambda_ae LAMBDA_AE coefficient for the reconstruction loss
--lambda_real LAMBDA_REAL coefficient for the real MMD2 loss
--save_path SAVE_PATH path to save the final model
--save_name SAVE_NAME model/prediction names
For a quick start and experiment grid search, please execute run_klcpd.py
. For an example on BeeDance dataset:
$ python run_klcpd.py --dataroot ./data --dataset beedance --wnd_dim_list 25 --max_iter 2000 --batch_size 64
This repository is by Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabás Póczos, and contains the source code to reproduce the experiments in our paper Kernel Change-point Detection with Auxiliary Deep Generative Models. If you find this repository helpful in your publications, please consider citing our paper.
@article{chang2019kernel,
title={Kernel change-point detection with auxiliary deep generative models},
author={Chang, Wei-Cheng and Li, Chun-Liang and Yang, Yiming and P{\'o}czos, Barnab{\'a}s},
journal={arXiv preprint arXiv:1901.06077},
year={2019}
}
For any questions and comments, please send your email to wchang2@cs.cmu.edu