Skip to content

Object Detection Model using MobileNet V2 640x640 for Road Detection

Notifications You must be signed in to change notification settings

OmarZakaria10/Road-Obstacles-ObjectDetection-Tflite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Computer Vision Model for Object Detection for AROS

This project is designed to detect specific classes using a TensorFlow Lite model (MobileNet V2 640x640).

Classes detected

  • Obstacles
  • person
  • bicycle
  • car
  • motorcycle
  • bus
  • truck
  • accident

Metrics

alt text alt text

Sample of Real Time Detection

Watch the videoalt text

Steps

Step 1: Generate TFLite Files

Walk through the TFOD tutorial up to step 12 to generate TFLite files.

Step 2: Clone the Repository

Clone the current repository onto your Raspberry Pi or copy it from a machine using RDP.

git clone https://github.com/OmarZakaria10/Road-Obstacles-ObjectDetection-Tflite.git

Step 3: Set Up Virtual Environment

Create and activate a virtual environment to manage project dependencies.

On Unix or MacOS:

python3 -m venv venv
source venv/bin/activate

On Windows:

python -m venv venv
venv\Scripts\activate

###Step 4: Install Dependencies Install the required dependencies listed in the requirements.txt file

pip install -r requirements.txt

Additionally, install the following system dependencies on your Raspberry Pi:

sudo apt-get install libcblas-dev libhdf5-dev libhdf5-serial-dev libatlas-base-dev libjasper-dev libqtgui4 libqt4-test
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list
curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
sudo apt-get update

Step 5: Run Real-Time Detections

python3 script.py

About

Object Detection Model using MobileNet V2 640x640 for Road Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages