This project is designed to detect specific classes using a TensorFlow Lite model (MobileNet V2 640x640).
- Obstacles
- person
- bicycle
- car
- motorcycle
- bus
- truck
- accident
Walk through the TFOD tutorial up to step 12 to generate TFLite files.
Clone the current repository onto your Raspberry Pi or copy it from a machine using RDP.
git clone https://github.com/OmarZakaria10/Road-Obstacles-ObjectDetection-Tflite.git
Create and activate a virtual environment to manage project dependencies.
On Unix or MacOS:
python3 -m venv venv
source venv/bin/activate
On Windows:
python -m venv venv
venv\Scripts\activate
###Step 4: Install Dependencies Install the required dependencies listed in the requirements.txt file
pip install -r requirements.txt
Additionally, install the following system dependencies on your Raspberry Pi:
sudo apt-get install libcblas-dev libhdf5-dev libhdf5-serial-dev libatlas-base-dev libjasper-dev libqtgui4 libqt4-test
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list
curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
sudo apt-get update
python3 script.py