An automated attendance tracking system powered by facial recognition technology and Firebase real-time database.
- 📸 Real-time face detection and recognition
- ✅ Automated attendance marking
- 🔥 Firebase real-time database integration
- 👤 Student information display
- 🔄 Duplicate entry prevention (30s cooldown)
- ⚡ Multi-threaded performance
- Python 3.8
- Webcam
- Firebase Account
pip install opencv-python
pip install face-recognition
pip install numpy
pip install firebase-admin
pip install cvzone
-
Clone the repository
git clone https://github.com/OnlyOutliers/Real_Time_Attendance
-
Firebase Configuration
- Create a Firebase project
- Download
serviceaccountkey.json
- Place it in the project root
- Update database URL in the code
-
Initialize Database
python addDataToDataBase.py
-
Generate Encodings
python encodegenerator.py
-
Run the Application
python main.py
├── main.py # Main application
├── encodegenerator.py # Face encoding generator
├── addDataToDataBase.py # Database initializer
├── Images/
│ ├── Background/ # UI backgrounds
│ ├── Students/ # Student photos
│ └── state/ # UI state images
├── Encodefile.p # Encoded faces
└── serviceaccountkey.json # Firebase credentials
{
"Students": {
"student_id": {
"name": "Student Name",
"major": "Department",
"starting_year": "202X",
"total_attendence": 0,
"standing": "Grade",
"Year": 1,
"last_attendence_time": "YYYY-MM-DD HH:MM:SS"
}
}
}
- Captures webcam feed
- Detects and encodes faces
- Matches with stored encodings
- Updates attendance in Firebase
- Displays student information
- Prevents duplicate entries
- Fork the repository
- Create your feature branch
git checkout -b feature/AmazingFeature
- Commit your changes
git commit -m 'Add some AmazingFeature'
- Push to the branch
git push origin feature/AmazingFeature
- Open a Pull Request
Project Link: https://github.com/OnlyOutliers/Real_Time_Attendance