Note: Still a WIP - A PR is always welcome.
The API is subject to change as I iterate over use cases and improve the design.
A nearly dependency-free disassembler and assembler for the Hermes bytecode, written in Rust.
For the sake transparency, the current dependencies are:
sha1
- This is required for generating the footer hash.
serde
- Optional- So you can serialize/deserialize in your app
specta
- Optional- To generate TS types for tauri or wasm use cases
specta-util
- Optional- Same as above
A special thanks to P1sec for digging through the Hermes git repo, pulling all of the BytecodeDef files out, and tagging them. This made writing this tool much easier.
HBC Version | Disassembler | (Binary) Assembler | (Textual) Assembler | Decompiler |
---|---|---|---|---|
89 | ✅ | ✅ | ❌ | ❌ |
90 | ✅ | ✅ | ❌ | ❌ |
93 | ✅ | ✅ | ❌ | ❌ |
94 | ✅ | ✅ | ❌ | ❌ |
95 | ✅ | ✅ | ❌ | ❌ |
96 | ✅ | ✅ | ❌ | ❌ |
A couple of features are missing currently, as they're low priority for me at the moment.
- Regular Expression deserialization and serialization*
- Debug Info deserialization and serialization*
* Supports u8 buffer for manual population
Chances are you need to compile the program that uses this crate with the --release
flag and run the binary directly.
The size of a binary produced with hermes_rs
is going to be a bit larger than one compiled directly with hermes. This is primarily due to the fact that hermes does some string merging to keep bundles down.
Example: If car
and racecar
are both strings within the app, only racecar
will be written. Two StringTableEntry objects are created: Entry { offset: 0, length: 7 }
and Entry { offset: 4, length: 3 }
.
As of right now, hermes_rs
does not implement this functionality. It's pretty literal when it comes to strings, and doesn't try to be clever or save space.
- Full coverage for all public HBC versions
- The ability to inject code stubs directly into the .hbc file for instrumentation
- Textual HBC assembly
- Eventually a halfway decent decompiler, but that may be another project that uses this one as a base
- Find which functions reference specific strings
- Generate frida hooks for mobile implementations
- hermes loader -> hook loading the package -> feed to hermes_rs -> patch code for bidirectional communication or even just logging
- Writing fuzzers
- Disassemble Hermes Bytecode (HBC)
- Assemble Hermes Bytecode (HBC)
- Type-safe instruction building across multiple versions of HBC
- The ability to reduce binary size by only enabling certain versions of HBC
- Utilities
- Dump Bytecode
cargo run --bin bytecode index.android.bundle
- Dump Strings
cargo run --bin strings index.android.bundle
- Dump Bytecode
To add hermes_rs to your project, simply run:
cargo add hermes_rs
- Specific HBC Versions - enable any of
["v89","v90","v93","v94","v95", "v96"]
- Default:
["v94","v95", "v96"]
- Default:
- Serde Support (Optional) - enable the
serde
feature - Generate TS Types (Optional) - enable the
specta
featurecargo run --bin gen_ts --features specta
will output*.d.ts
to./ts
.- Note: Only one HBC version can be used at a time for this due to a limitiation in
specta
.
let filename = "./input_data/index.android.bundle";
let f = File::open(filename).expect("no file found");
let mut reader = io::BufReader::new(f);
let mut hermes_file = HermesFile::deserialize(&mut reader);
println!("{:?}", hermes_file.header);
Output:
HermesHeader {
magic: 2240826417119764422,
version: 94,
sha1: [20, 178, 139, 133, 105, 198, 134, 29, 58, 101, 194, 248, 210, 173, 84, 79, 162, 174, 43, 205],
file_length: 11059884,
global_code_index: 0,
function_count: 54483,
string_kind_count: 3,
identifier_count: 35878,
string_count: 65091,
overflow_string_count: 425,
string_storage_size: 2238216,
big_int_count: 0,
big_int_storage_size: 0,
reg_exp_count: 448,
reg_exp_storage_size: 49719,
array_buffer_size: 132510,
obj_key_buffer_size: 43517,
obj_value_buffer_size: 137207,
segment_id: 0,
cjs_module_count: 0,
cjs_module_offset: 0,
function_source_count: 1361,
debug_info_offset: 11059836,
options: BytecodeOptions {
static_builtins: false,
cjs_modules_statically_resolved: false,
has_async: false,
flags: false
},
}
println!("Strings: {:?}", hermes_file.get_strings());
Output:
Strings: ["$$typeof", "type", "API", "isArray", "Array", ... ]
for func in hermes_file.function_headers {
println!("{:?}", func);
}
// Prints the following:
Small(SmallFunctionHeader { offset: 252641, param_count: 3, byte_size: 63, func_name: 5168, info_offset: 842244, frame_size: 16, env_size: 0, highest_read_cache_index: 1, highest_write_cache_index: 0, flags: FunctionHeaderFlag { prohibit_invoke: ProhibitNone, strict_mode: false, has_exception_handler: false, has_debug_info: false, overflowed: false }, exception_handlers: [], debug_info: None })
Small(LargeFunctionHeader { offset: 252704, param_count: 2, byte_size: 41, func_name: 3756, info_offset: 842244, frame_size: 14, env_size: 0, highest_read_cache_index: 1, highest_write_cache_index: 0, flags: FunctionHeaderFlag { prohibit_invoke: ProhibitNone, strict_mode: false, has_exception_handler: false, has_debug_info: false, overflowed: false }, exception_handlers: [], debug_info: None })
...
Single Function
Call print_bytecode_for_fn(fidx)
, where fidx
is the function index of the element in hermes_file.function_headers
.
hermes_file.parse_bytecode_for_fn(1337);
Output:
Function<setCurrentTarget>(3 params, 11 registers, 0 symbols):
0x00000000 GetEnvironment r0, 0
0x00000001 LoadFromEnvironment r2, r0, 6
0x00000002 LoadConstUndefined r0
0x00000003 LoadParam r1, 1
0x00000004 Call2 r2, r2, r0, r1
0x00000005 LoadConstNull r1
0x00000006 PutById r2, r1, 1, "currentTarget"
0x00000007 Ret r0
Entire File
Printing out the bytecode for the entire executable in a human-readable format is possible by calling print_bytecode
.
hermes_file.print_bytecode();
Which outputs:
Function<global>(1 params, 19 registers, 0 symbols):
0x00000000 DeclareGlobalVar "__BUNDLE_START_TIME__"
0x00000001 DeclareGlobalVar "__DEV__"
0x00000002 DeclareGlobalVar "process"
0x00000003 DeclareGlobalVar "__METRO_GLOBAL_PREFIX__"
0x00000004 CreateEnvironment r3
0x00000005 LoadThisNS r4
0x00000006 GetById r1, r4, 1, "nativePerformanceNow"
0x00000007 GetGlobalObject r0
0x00000008 JmpTrue 2L1, r1
0x00000009 TryGetById r2, r0, 2, "Date"
0x0000000A GetByIdShort r1, r2, 3, "now"
0x0000000B Call1 r1, r1, r2
0x0000000C Jmp L1
0x0000000D TryGetById r5, r0, 1, "nativePerformanceNow"
L1:
0x0000000E LoadConstUndefined r2
0x0000000F Call1 r1, r5, r2
0x00000010 PutById r0, r1, 1, "__BUNDLE_START_TIME__"
0x00000011 LoadConstFalse r1
0x00000012 PutById r0, r1, 2, "__DEV__"
0x00000013 GetByIdShort r1, r4, 4, "process"
0x00000014 JmpTrue 5, r1
...
Raw Bytes
In the event that you want to access just the raw bytes for a specific function, you can use hermes_file.get_bytecode()
and iterate.
The function returns a Vec<FunctionBytecode>
, which has the function index and bytecode (Vec<u8>
) pairing.
let bc = hermes_file.get_bytecode();
for func in bc {
println!("{:?}", func);
}
Output:
FunctionBytecode { func_index: 0, bytecode: [52, 2, 11, 0, 0, 52, 3, 11, 0, 0, 52, 217, 0, 0, 0, 52, ..<truncated>... ] }
FunctionBytecode { func_index: 1, bytecode: [50, 2, 108, 8, 1, 42, 2, 0, 8, 100, 7, 2, 2, 0, 100, 4, ..<truncated>... ] }
FunctionBytecode { func_index: 2, bytecode: [48, 0, 57, 0, 0, 1, 19, 0, 54, 1, 0, 2, 219, 106, 1, 1, ..<truncated>... ] }
FunctionBytecode { func_index: 3, bytecode: [108, 3, 2, 41, 0, 0, 46, 2, 0, 1, 54, 1, 2, 1, 163, 83, ..<truncated>... ] }
FunctionBytecode { func_index: 4, bytecode: [108, 3, 1, 41, 0, 0, 46, 2, 0, 1, 54, 1, 2, 1, 47, 83, ..<truncated>... ] }
FunctionBytecode { func_index: 5, bytecode: [108, 4, 1, 41, 2, 0, 46, 1, 2, 1, 54, 0, 1, 1, 47, 83, ..<truncated>... ] }
FunctionBytecode { func_index: 6, bytecode: [108, 4, 1, 41, 2, 0, 46, 1, 2, 1, 54, 0, 1, 1, 47, 83, ..<truncated>... ] }
Encoding instructions is trivial - each Instruction
implements a trait with deserialize
and serialize
methods.
use hermes_rs::{define_instructions, InstructionParser};
/*
* Use the define_instructions macro to get a vec of the correct instructions
* for the version of Hermes you're targeting.
* The first parameter is the hermes version you'd like to use.
*
* The bytecode below represents: eval(`print(123);`)
* The `print(123)` string is the second (index 1) string in the string table.
*/
let instructions = define_instructions!(
hermes_rs::v96,
LoadConstString { r0: 0.into(), p0: 1.into() }, // Load `print(123);` into r0
DirectEval { r0: 0.into(), r1: 0.into(), p0: 0.into() }, // Evaluate the string
Ret { r0: 0.into() }, // Return
).unwrap();
let mut writer = Vec::new();
for instr in instructions {
instr.serialize(&mut writer);
}
// Make sure the encoded bytes are valid
assert!(writer == vec![115, 0, 1, 0, 94, 0, 0, 0, 92, 0], "Bytecode is incorrect!");
Take a look at the Creating Binaries example.
Working example: cargo run --example create
Want to use a specific version of the Hermes bytecode and reduce your binary size?
In Cargo.toml, find the hermes_rs
dependency and select which HBC version(s) you'd like to use in your application.
Example:
[dependencies]
hermes_rs = { features = ["v89", "v90", "v93", "v94", "v95", "v96"] }
My Stuff
Other Resources
- Official docs: https://hermesengine.dev/
- Source: https://github.com/facebook/hermes
- hermes-dec disassembler/decompiler:
- hbctool: https://github.com/bongtrop/hbctool
- hasmer: https://github.com/lucasbaizer2/hasmer
My code isn't perfect, and this project is a fairly large undertaking. Because of this, you may run into some bugs. Aside from using an actual debugger with this project, the best tool to use for inspecting Hermes Bytecode files is ImHex by WerWolv.
It features an expressive pattern language that allows you to visualize binary structures with ease.
I've included a scratchpad pattern to speed things up. It isn't 1:1 with this repository, but it's close enough to inspect most bits of memory to identify where things may be going wrong and why.
If you need something more verbose that includes examples of instructions, see: https://github.com/Pilfer/hermes-imhex-pattern/. Please note that parts of that file are wrong and you may need to do some hevay lifting or code generation to support the HBC version you're targeting.
This section assumes that only instructions have been modified, and not core parsing logic (struct fields, RegExp bytecode, Debug Info fields, etc). If the latter has a diff, obviously we'll need to implement those changes.
There is a script in ./def_versions/_gen_macros.js
that reads and parses a Bytecode Definition file passed to it as the first argument and outputs a file containing the macro body to support the updated instructions.
# How I generated them
cd ./def_versions
node _gen_macros.js 89.def > ../src/hermes/v89/mod.rs
node _gen_macros.js 90.def > ../src/hermes/v90/mod.rs
node _gen_macros.js 93.def > ../src/hermes/v93/mod.rs
node _gen_macros.js 94.def > ../src/hermes/v94/mod.rs
node _gen_macros.js 95.def > ../src/hermes/v95/mod.rs
Example with a hypothetical v100
version :
node _gen_macros.js v100.def
Which outputs:
use crate::hermes;
build_instructions!(
(0, Unreachable, ),
(1, NewObjectWithBuffer, r0: Reg8, p0: UInt16, p1: UInt16, p2: UInt16, p3: UInt16),
(2, NewObjectWithBufferLong, r0: Reg8, p0: UInt16, p1: UInt16, p2: UInt32, p3: UInt32),
(3, NewObject, r0: Reg8),
(4, NewObjectWithParent, r0: Reg8, r1: Reg8),
... other instructions here
);
From here, you'll add a new directory and mod.rs
file for this version (./src/hermes/v100/mod.rs
) and paste the output from the script into it.
This could (and probably should) be a build.rs
process.
After creating this file, open up ./src/hermes/mod.rs
and navigate to the Instruction module imports and add the import, then populate the Instruction enum + trait + other functions' match statements with the new version. You'll likely need to rely on the compiler to complain about missing match branches - there's only a few, though.
As this codebase evolves, you may need add branch arms in different matches.
#[macro_use]
#[cfg(feature = "v100")]
pub mod v100;
// ...
pub enum HermesInstruction {
// ...
#[cfg(feature = "v100")]
V100(v100::Instruction),
}
// ...
impl HermesInstruction {
// implement the methods of the trait
fn display(&self, _hermes: &HermesHeader) -> String{
match self {
// ...
#[cfg(feature = "v100")]
HermesInstruction::V100(instruction) => instruction.display(_hermes),
}
}
fn size(&self) -> usize {
match self {
// ...
#[cfg(feature = "v100")]
HermesInstruction::V100(instruction) => instruction.size(),
}
}
}
// ...
// In parse_bytecode there's currently a match statement that will also need to be populated...
let ins_obj: Option<HermesInstruction> = match self.version {
#[cfg(feature = "v89")]
89 => Some(HermesInstruction::V89(v89::Instruction::deserialize(&mut r_cursor, op))),
#[cfg(feature = "v90")]
90 => Some(HermesInstruction::V90(v90::Instruction::deserialize(&mut r_cursor, op))),
#[cfg(feature = "v93")]
93 => Some(HermesInstruction::V93(v93::Instruction::deserialize(&mut r_cursor, op))),
#[cfg(feature = "v94")]
94 => Some(HermesInstruction::V94(v94::Instruction::deserialize(&mut r_cursor, op))),
#[cfg(feature = "v95")]
95 => Some(HermesInstruction::V95(v95::Instruction::deserialize(&mut r_cursor, op))),
_ => None,
};
Finally, add the feature
(v100 = []
) to Cargo.toml.