Skip to content

I automate web scraping with Selenium, extracting product and seller data from IndiaMART. This data is organized into pandas DataFrames and saved as Excel files. Results are then shared on LinkedIn and GitHub via API calls, streamlining data collection and boosting professional visibility.

License

Notifications You must be signed in to change notification settings

R-Mahesh45/India_Mart_WebScraping

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

India_Mart_WebScraping-

This script automates web scraping using Selenium to extract product and seller information from IndiaMART. The scraped data is then structured into a pandas DataFrame and saved as Excel files. Additionally, it can be shared on LinkedIn and GitHub for professional purposes using HTTP requests and API calls.

Here is your code broken into pieces with their importance and explanation:


1. Import Libraries

from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException, NoSuchElementException
import pandas as pd
import time

Purpose:
These imports provide all the necessary tools for:

  • WebDriver setup: Initialize and manage Chrome browser automation (webdriver, Service, Options).
  • Element interaction: Locate and interact with page elements (By, WebDriverWait, expected_conditions).
  • Exception handling: Manage timeout and missing element errors (TimeoutException, NoSuchElementException).
  • Data storage and delays: Store scraped data in a structured format using pandas and introduce delays using time.

2. Define the Scraping Function

def scrape_and_save_data(url, driver_path, step_size=2):

Purpose:
This function automates the scraping process and saves the data.

  • url: The webpage to scrape.
  • driver_path: Path to ChromeDriver executable for browser control.
  • step_size: Number of records to skip while saving subsets of data.

3. WebDriver Setup

chrome_options = Options()
service = Service(driver_path)
driver = webdriver.Chrome(service=service, options=chrome_options)
driver.get(url)

Purpose:
Sets up the Chrome browser using Selenium.

  • chrome_options: Custom browser options (e.g., headless mode, disable extensions).
  • driver.get(url): Navigates to the specified URL.

4. Wait for Initial Elements to Load

try:
    WebDriverWait(driver, 20).until(EC.presence_of_all_elements_located((By.CLASS_NAME, "cardlinks")))
    WebDriverWait(driver, 20).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, "span.elps.elps1")))
except TimeoutException:
    print("Error: Elements did not load in time.")
    driver.quit()
    return

Purpose:
Ensures essential elements (like product names and addresses) are loaded before scraping begins.

  • Uses WebDriverWait with a timeout of 20 seconds to wait for specific elements (cardlinks and span.elps.elps1).
  • Handles TimeoutException to exit gracefully if elements don't load.

5. Initialize Data Storage

product_names = []
product_links = []
seller_names = []
seller_addresses = []

Purpose:
Creates empty lists to store scraped data for products, links, sellers, and addresses.


6. Define the Scraping Logic

def scrape_data():
    try:
        products = driver.find_elements(By.CLASS_NAME, "cardlinks")
        addresses = driver.find_elements(By.CSS_SELECTOR, "span.elps.elps1")

        for i, product in enumerate(products):
            product_name = product.text.strip()
            product_link = product.get_attribute('href')

            try:
                seller_name = product.find_element(By.XPATH, ".//following-sibling::a").text.strip()
            except NoSuchElementException:
                seller_name = "N/A"

            seller_address = addresses[i].text.strip() if i < len(addresses) else 'N/A'

            product_names.append(product_name)
            product_links.append(product_link)
            seller_names.append(seller_name)
            seller_addresses.append(seller_address)
    except Exception as e:
        print(f"Error during scraping: {e}")

Purpose:
Extracts product and seller details from the webpage.

  • Iterates through products and their related elements (cardlinks and elps).
  • Handles missing seller names using NoSuchElementException.
  • Appends the data to the respective lists.

7. Pause for Manual Interaction

print("Please log in and click the 'Show More' button manually. Press Enter to continue...")
input()

Purpose:
Allows manual login and interaction, if required, before automated scraping continues.


8. Define Scrolling and Loading Logic

def scroll_and_load():
    last_height = driver.execute_script("return document.body.scrollHeight")
    while True:
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        time.sleep(3)

        scrape_data()

        new_height = driver.execute_script("return document.body.scrollHeight")
        if new_height == last_height:
            print("No more data to load.")
            break
        last_height = new_height

Purpose:
Handles dynamic content loading by scrolling the page.

  • Scrolls to the bottom and waits for new data to load.
  • Breaks the loop when no additional data loads (last_height == new_height).

9. Save Data

df = pd.DataFrame({
    'Product Name': product_names,
    'Product Link': product_links,
    'Seller Name': seller_names,
    'Seller Address': seller_addresses
})
df.to_excel('korean_scraped_data.xlsx', index=False)

Purpose:
Converts the scraped data into a structured pandas DataFrame and saves it as an Excel file.


10. Save Subset of Data

indices = list(range(0, len(df), step_size))
specific_records = df.iloc[indices].reset_index(drop=True)
nth_records = df.iloc[step_size-1::step_size].reset_index(drop=True)

specific_records.to_excel("korean_products.xlsx", index=False)
nth_records.to_excel("korean_seller.xlsx", index=False)

Purpose:
Saves specific records (every Nth record) to separate Excel files for detailed analysis.


11. Close the Browser

driver.quit()

Purpose:
Closes the Chrome browser instance to release resources.


12. Function Invocation

scrape_and_save_data(
    url=url_korean,  # Replace with the actual URL
    driver_path=r'C:\Users\data_architect\Downloads\chromedriver-win64 (1)\chromedriver-win64\chromedriver.exe',
    step_size=2
)

Purpose:
Executes the scraping function with the specified URL, ChromeDriver path, and step size.

  • url_korean: Replace with the actual URL to scrape.
  • driver_path: Path to ChromeDriver executable.
  • step_size: Controls the interval for saving subsets of records.

About

I automate web scraping with Selenium, extracting product and seller data from IndiaMART. This data is organized into pandas DataFrames and saved as Excel files. Results are then shared on LinkedIn and GitHub via API calls, streamlining data collection and boosting professional visibility.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published