Skip to content

This project is a part of the research on PolyCystic Ovary Syndrome Diagnosis using patient history datasets through statistical feature selection and multiple machine learning strategies. The aim of this project was to identify the best possible features that strongly classifies PCOS in patients of different age and conditions.

License

Notifications You must be signed in to change notification settings

Rizwan-Hasan/Improved-Sampling-and-Feature-Selection-to-Support-Extreme-Gradient-Boosting-For-PCOS-Diagnosis

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Improved Sampling and Feature Selection to Support Extreme Gradient Boosting for PCOS Diagnosis

This project is a part of the research on PolyCystic Ovary Syndrome Diagnosis using a patient history datasets through statistical feature selection and multiple machine learning strategies. The aim of this project was to identify the best possible that strongly classifies PCOS in patients of different age and conditions.

Related Research Article

M. S. Khan Inan, R. E. Ulfath, F. I. Alam, F. K. Bappee and R. Hasan, "Improved Sampling and Feature Selection to Support Extreme Gradient Boosting For PCOS Diagnosis," 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 2021, pp. 1046-1050, doi: 10.1109/CCWC51732.2021.9375994.

Lab Members

Rizwan Hasan
Rubaiath E Ulfath

About

This project is a part of the research on PolyCystic Ovary Syndrome Diagnosis using patient history datasets through statistical feature selection and multiple machine learning strategies. The aim of this project was to identify the best possible features that strongly classifies PCOS in patients of different age and conditions.

Topics

Resources

License

Stars

Watchers

Forks

Languages

  • Jupyter Notebook 100.0%